
A simple-minded Lagrangian approach seems to produce normal diffusion. Also, if lo/δx =
κ/cs . 1, and at the same time T ≪ α(δx)2 (small amplitude fluctuatios), we would find
T/(ρcsκ) ≪ 1, meaning that the diffusivity correction is small. Back to Eq. (267) this
implise S2(t) ≪ M2(t): the direct deformation field ballistic contribution to heat transport
is small. Smallness of the ratio S2/M2 has the same origin of the smallness of the bare
coupling constant g0, that is the small deformation regime considered. The fact that the
bare coupling is small, however, did not prevent the renormalization of κ to diverge at
sufficiently large scales. We cannot disregard the contribution from the correlation of
small scale fluctuations of f and q̇ to the large scale transport of f̄ .

8 Irreversible stochastic dynamics

We say that a dynamics is irreversible if it does not satisfy detailed balance. This requires
a Langevin dynamics with more than one degrees of freedom. Such a Langevin dynamics
can be obtained from a Markovian jump dynamics xn → xn±1, with the coefficients in the
Langevin equation dx = a(x)dt+ b(x)dB expressed in terms of transition probabilities as

a(x)δt = [P (xn → xn+1)− P (xn+1 → xn)]δx,

(b(x))2δt = [P (xn → xn+1) + P (xn+1 → xn)]δx
2, (269)

where x = (xn + xn+1)/2. Since the jumps occur between adjacent links in the chain,
detailed balance is trivially satisfied, which implies that the continuum dynamics is re-
versible. The vice versa is not true; an irreversible microscopic dynamics may lead to a
macroscopic reversible dynamics. To see this, just add an intermediate step yn in the jump
process, with xn < yn < xn+1, and still x = (xn + xn+1)/2, in such a way that yn does not
enter the dynamics in the continuum, and impose the rule on the transition probabilities

P̄ (xn)P (xn → yn) = P̄ (yn)P (yn → xn+1) = P̄ (xn+1)P̄ (xn+1 → xn);

P (xn → xn+1) = P (xn+1 → yn) = P (yn → xn) = 0, (270)

which does not satisfy detailed balance. The coarse graining in Eq. (269) is replaced by

a(x)δt = [P (xn → yn)− P (xn+1 → xn)]δx,

(b(x))2δt = [P (xn → yn) + P (xn+1 → xn)]δx
2, (271)

which however leads to the same Langevin dynamics dx = a(x)dt+ b(x)dB.
We recall the conditions for macroscopic reversibility for a generic multivariate Langevin

dynamics dxi = ai(x)dt+ bij(x)dBj and define Dij(x) = bik(x)bkj(x). We must have

0 = ∂t[P (x, t|y, 0)P̄ (y)− P (y, t|x, 0)P̄ (x)]

= [L̂+(x)P (x, t|y, 0)P̄ (y)− L̂+(y)P (y, t|x, 0)P̄ (x)], (272)
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where L̂+(x) = −∂xi
(ai(x) . )+∂xi

∂xj
(Dij(x) . ) is the Fokker-Planck operator. Integrating

over generic functions f(x) and g(y) gives

0 =

∫

dxdy f(y)g(x)[L̂+(x)P (x, t|y, 0)P̄ (y)− L̂+(y)P (y, t|x, 0)P̄ (x)]

=

∫

dxdy f(y)[P (x, t|y, 0)P̄ (y)L̂(x)g(x)− L̂+(y)P (y, t|x, 0)P̄ (x)g(x)], (273)

where L̂(x) = ai(x)∂xi
+Dij(x)∂xi

∂xj
is the adjoint of the Fokker-Planck operator. Taking

the x → y limit we get

0 =

∫

dxdy f(y)[δ(x− y)P̄ (y)L̂(x)g(x)− L̂+(y)δ(x− y)P̄ (x)g(x)]

=

∫

dx f(x)P̄ (x)L̂g(x)−
∫

dy f(y)L̂+(y)

∫

dxg(x)P̄ (x)δ(x− y)

=

∫

dx f(x)
[

P̄ (x)L̂g(x)− L̂+g(x)P̄ (x)
]

. (274)

The relation can be rewritten in the form
∫

dx P̄ (x)
[

f(x)L̂g(x)− g(x)L̂f(x)
]

= 0, (275)

which tells us that L̂ must be self-adjoint with respect to the L2 norm with weight P̄ (x).
Equation (275) implies

∫

dx P̄ (x)
[

f(x)〈ġ|x〉 − g(x)〈ḟ |x〉] = 0 ⇒ 〈f ġ〉 = 〈gḟ〉, (276)

which has as special case,

〈xiẋj〉 = 〈xjẋi〉. (277)

The above can clearly be seen as a precursor of Onsager’s relations.
We can obtain reversibility conditions on the drift and the diffusion in the Fokker-Planck

operator directly from Eq. (274), by writing explicitly

0 =

∫

dx f [P̄ (ai∂i +Dij∂i∂j)g + ∂i(aiP̄ g)− ∂i∂j(DijP̄ g)]

=

∫

dx (f∂ig)[aiP̄ − ∂j(DijP̄ )], (278)

where use has been made of L̂+P̄ = 0. We obtain finally the condition that the probability
current at stationarity must be zero

aiP̄ − ∂j(DijP̄ ) = 0, (279)
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which is tantamount to a condition of detailed balance in the continuum. We can rearrange
the equation to give

D−1
jk (ak − ∂lDlk) = ∂j ln P̄ , (280)

which, in order to be satisfied, requires the LHS to be itself a gradient. We obtain finally

ak = ∂lDlk +Dlk∂l ln P̄ . (281)

We can calculate the degree of asymmetry in the time correlation 〈gḟ〉 from the stationary
current. Comparing Eqs. (276) and (278) we find

〈f ġ〉 − 〈ḟ g〉 = 〈fJl∂lg〉 (282)

which has as special case

〈xiẋj〉 − 〈ẋixj〉 = 〈xiJj〉. (283)

The reversible or irreversible nature of the dynamics has consequences on the way the
coefficients in the Fokker-Planck equation and in the associated SDE transform under time
reversal. In the case of a reversible dynamics, we know that that the drift is symmetric
under time reversal

aforward =
〈[x(t+∆t)− x]|x, t〉

∆t
=

〈[x(t−∆t)− x]|x, t〉
∆t

= abackward. (284)

This corresponds to forward and backward SDE’s of identical form dx = adt + dξ for
dt > 0 and dt < 0, and identical forward and backward Fokker-Planck equations ∂P =
∂x[−aP + ∂x(DP )] and ∂t̂P = ∂x[−aP + ∂x(DP )], t̂ = tf − t.

Reversibility breakup is associated with the presence of a stationary current. Time re-
versal of a stationary irreversible distribution produces an identical stationary distribution
but with stationary current of opposite sign (a current flowing clockwise forward in time,
flows counterclockwise seen backward in time). This requires the presence of a drift com-
ponent that is antisymmetric under time reversal. The stationary current obtained from
the forward Fokker-Planck equation is Ji = (−ai + ∂jDij +Dij∂j ln P̄ )P̄ , where ∂jJi = 0,

which can be rewritten, by defining Ĵi = Ji/P̄ ,

−ai + ∂jDij +Dij∂j ln P̄ = Ĵi. (285)

Let us indicate with 2a−i the drift contribution that must be subtracted to ai to reverse
sign to Ji for fixed P̄ :

−ai + 2a−i + ∂jDij +Dij∂j ln P̄ = −Ĵi (286)

Taking half the sum of Eqs. (285) and (286) gives

ai − a−i − ∂jDij = Dij∂j ln P̄ , (287)
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which allows us to identify with

āi = ai − a−i = ∂jDij +Dij∂j ln P̄ and a−i = ai − āi, (288)

respectively, the reversible and the irreversible component of the drift.

Part II

Systems with mixed boundary conditions in

time

9 On the establishment of a causality principle

We say that a system has a causal dynamics if its response to a perturbation by an external
agent does not anticipate the perturbation (past and future defined relative to the arrow
of time of the universe). The fact that the agent can be considered external is crucial:
it basically means that the past history of the system does not influence perturbation
enactment.

The following example illustrates the situation.
Suppose our system is described by the Langevin equation ẋ+ Γx = ξ + f , where ξ is

the white noise and f(t) is the perturbation. By choosing f(t) = Xδ(t− T ) with X large,
fixed independently of x(t), with the system originally in equilibrium conditions, we find
x(t) ≃ X exp(−Γ(t− T )) for t > T .4 The perturbation follows the forcing, as expected in
a causal dynamics, and dissipates in the future (it decays for t → ∞). The system and the
agent are uncorrelated in the past and become correlated in the future.

Now suppose we allow the perturbation to depend on the past history of the system,
we could arrange things in such a way, say, that the perturbation is switched on only if
x(t) = X + x̃, where x̃ is a random variable with σx̃ = σx and f = −Xδ(t − T ). The
system would evolve along an atypical trajectory for t < T , x(t) = X exp[Γ(t − T )], and
be in equilibrium for t > T—a state of affair undistinguishable from that of an anticausal-
antidissipative response, with system and agent uncorrelated in the future and correlated
in the past.

This suggests us that causality and dissipation are not intrinsic properties of the system,
instead, they are consequence of the fact that we experimentally realize the perturbation
without sampling. We surmise that causality and dissipation are not intrinsic characteristic
of the system, rather, they are consequence of the boundary conditions imposed on the
dynamics, consistent with the fact that the equilibrium statistics, away from initial or final
conditions, is time-reversible.

4We choose to work in a large deviation regime only for simplicity, which allows us to focus on the
leading trajectory, instead of having to deal with an ensemble of trajectories.
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