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1 Continuous limit

We are interested in the description of fluids at scales l much larger than the typical
molecular separation a0. The typical number Nl of molecules in a volume Vl of linear
size l will thus be very large,

Nl ∼ (l/a0)
3 ≫ 1, (1.1)
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and the relative fluctuation δNl/Nl very small, which means that we can approximate
instantaneous quantities with averages, Nl ≃ ⟨Nl⟩. This is a macroscopic description
that will make sense only if the spatial scale of variation of the variables of interest
is itself macroscopic. We assume this to be the case, and identify with l the scale of
variation of the macroscopic quantities.

The condition l ≫ a0 allows us to define macroscopic quantities through a process
of coarse-graining. Introduce then an intermediate scale a, a0 ≪ a ≪ l, such that the
variation of macroscopic quantities at that scale is small, and the relative fluctuation
magnitude of macroscopic quantities is small as well. Let us carry out the procedure
with the density n. We first define a coarse-grained density

na(x, t) =
Na(x, t)

Va

≃ ⟨Na(x, t)⟩
Va

= ⟨na(x, t)⟩ (1.2)

and then exploit the condition a0 ≪ a ≪ l to formally carry out the continuum
limit

n(x, t) = lim
a→0

na(x, t). (1.3)

We follow the same procedure with the current density J and the fluid velocity
u(x, t). Indicate with vi(t) the instantaneous velocities of the molecules in Va =
Va(x) centered around x and define

n(x, t)u(x, t) = J(x, t) = lim
a→0

V −1
a

∑
i∈Va

vi(t), (1.4)

We shall focus in this course on systems composed of a single species of molecules.
The density n and the current density J will then be proportional through the
molecular mass m to the mass density ρ and the mass current density Jm,

ρ = mn, Jm = mJ. (1.5)

Macroscopic quantities such as the density n and the fluid velocity u are sums
of microscopic contributions by the individual molecules. If the interaction of the
molecules is not too strong, it is then possible to consider the microscopic contri-
butions to the generic macroscopic quantity X as statistically independent. This
allows us to make estimates of its fluctuation amplitude.

Suppose we have N molecules, and indicate with xi the contribution to X by
the i− th molecule, so that X =

∑N
i xi. We have for the average of X

µX = Nµx, (1.6)

and for its RMS:

σ2
X = ⟨(X − µX)

2⟩ =
∑
ij

⟨(xi − µ)(xj − µ)⟩. (1.7)
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Statistical independence, however, implies

⟨(xi − µ)(xj − µ)⟩ = σ2δij. (1.8)

Only terms with i = j will contribute to σ2
X , therefore

σ2
X = Nσ2

x. (1.9)

For large N ,

δX

X
∼ σX

µX

∼ N−1/2. (1.10)

As an application, let us evaluate the fluctuation in the number Na of molecules
in a volume Va ⊂ V . Indicate with N the total number of molecules in V , and
introduce a random variable xi, i = 1, . . . N , which is = 1 or = 0 depending on
whether i ∈ Va or /∈ Va. Indicate with p the probability that a given molecule at a
given time lies in Va. We expect that for small Va p ≪ 1. We immediately find

µx = p and, σ2
x = ⟨x2

i ⟩ − µ2
x = p− p2. (1.11)

Therefore, from Eqs. (1.6) and (1.9),

µNa = pN, σ2
Na

= (p− p2)N, (1.12)

which implies

δNa

Na

∼
√

(p− p2)N

pN
≃ (pN)−1/2 ∼ N−1/2

a . (1.13)

We likewise obtain
δna

n
∼ δJa

J
∼ δua

u
∼ δNa

Na

∼ (na3)−1/2, (1.14)

which allows us to reformulate the condition for a continuum limit as

nl3 ≫ 1. (1.15)

We conclude the chapter by introducing a concept that will accompany us
throughout the course: that of fluid element (or fluid parcel). A “fluid element”
is simply a portion of the fluid, which, on the time scales of interest, is not sig-
nificantly deformed by the flow. We can convince ourselves that a fluid volume of
size linear size l will behave as a fluid element at time scales ≪ (∂xu)

−1, provided
l∂xu ≪ u (we shall discuss the point more in detail in the next chapter).

We define the boundary of the fluid element by the condition that points on
its surface move with the local fluid velocity u(x, t). Molecules continuously cross
the volume boundary, but the molecule mean inflow and outflow will balance in the
reference frame moving with velocity u(x, t), and the mass in the volume will remain
constant on the average. Note that the motion of a fluid element is identical to that
of a solid particle small enough to be transported by the fluid without exerting any
feedback force. We call such an object a passive tracer.

We will adopt subscript L to indicate that a given volume (not necessarily a fluid
element) is transported by the flow.
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1.1 Suggested reading

• L.D. Landau and E.M. Lifshitz, “Statistical Physics” Vol. 5, Secs. 1, 2 and
114 (Pergamon Press, 1980)
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2 Fluid kinematics

2.1 Lagrangian and Eulerian description of a flow

We can achieve a kinematic description of a flow in two ways:

• We can work in a “laboratory frame” and study the flow evolution at a fixed
position in space; this is called an Eulerian approach.

• We can study the evolution of the flow measured by a fluid parcel transported
by that flow field; this is called a Lagrangian approach.

An Eulerian description may perhaps look more natural. Indeed, most evolution
equations, such as the Navier-Stokes equation, are written in an Eulerian frame,
likewise, most experimental measurements, e.g., that of u(x, t) by an anemometer,
are carried out at a fixed position of space. However, there are counterexamples.
The Bernoulli law is an example of an evolution equation in a Lagrangian frame;
experiments in wind tunnels are often based on seeding the flow with tracer particles,
and in one way or another, bring into play ideas from a Lagrangian point of view.

The first step in the Lagrangian description of a flow is to define the coordinate
of a fluid parcel. Indicate with

xL(t) ≡ xL(t|x0, t0) (2.1)

the position at time t of the fluid element which at time t0 was (or will be) at x0.
We call xL(t) a Lagrangian coordinate and refer to the associated trajectory as a
Lagrangian trajectory. 1

The couple (x0, t0) plays the role of a label identifying the parcel and is arbitrary.
The time t0 is itself arbitrary. In general, we could identify the parcel with a label
that does not bear any reference to points the parcel visits in its motion. The choice
in Eq. (2.1), however, allows us to identify

xL(t|x0, t) = x0, (2.2)

which will come in handy when switching from a Lagrangian to an Eulerian descrip-
tion.

From xL, we define the Lagrangian velocity of the parcel,

uL(t) ≡ uL(t|x0, t0) = ẋL(t|x0, t0) ≡ ∂txL(t|x0, t0). (2.3)

We can express the Lagrangian velocity uL(t) in terms of the Eulerian velocity
u(x, t),

uL(t|x0, t0) = u(xL(t|x0, t0), t) ⇒ uL(t|x0, t) = u(x0, t). (2.4)

1The formalism can be easily adapted to describe deformations in a solid medium. Suppose the
medium is undeformed at time t0. Indicate with x0 the coordinate of a point of the undeformed
medium; xL(t,x0|t0)− x0 will then be the deformation.
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By combining Eqs. (2.3) and (2.4), we obtain the equation of motion of a fluid
parcel in an Eulerian flow field u(x, t)

ẋL(t) = u(xL(t), t). (2.5)

The concept of Lagrangian trajectory is closely related to that of streamline (or
flowline) The streamlines of a vector field U(x) are defined as the trajectories of the
points obeying the equation

ẋs(t) = U(xs(t)). (2.6)

Indeed, the vectorU(x) is by construction tangent to the streamline passing through
x (this tells that ifU(x) ̸= 0, there is only one field line crossing x). We thus see that
the Lagrangian trajectories of a time-independent flow u = u(x), are the streamlines
of the flow. A related concept is that of streakline, which is the set of points obtained
by superposing all Lagrangian trajectories xL(t|x0, t0) originating in x0 for different
values of t0 (think of it as the result of the continuous injection at x0, of tracers,
then transported away by the flow).

From Eq. (2.5) we can derive the equation for the instantaneous streamlines of
a time-dependent flow field at a given time t,

ẋs(s) = u(xs(s), t). (2.7)

We see that in this case, the instantaneous flow lines, the Lagrangian trajectories
and the streak lines of the field do not coincide. They do coincide in the case of
time-independent flows.

We can extend the definitions in Eqs. (2.1) and (2.3) to the case of a generic
field ϕ(x, t). Indicate with

ϕL(t|x0, t0) = ϕ(xL(t|x0, t0), t) (2.8)

the value of the field measured along the path of a fluid parcel. This expression
allows us to characterize the dependence of the Lagrangian field on the variable t.
Let us analyze the dependence on the initial position x0. The change of variable
ϕ(xL(t|x0), t) = ϕL(t|x0) is an example of what in mathematical jargon is called the
pull-back ϕL = x∗

Lϕ of ϕ by xL: the value of the field ϕ is pulled back from the the
point xL to its original position x0 at time t0. We can thus intepret ϕL both as
the value of ϕ measured by the fluid parcel along the trajectory xL, and the value
of ϕ that the flow transports from x0 to the current position. In both cases, the
dependence of ϕL on t has a component that is not associated with transport, which
corresponds to the explicit time dependence of ϕ(xL, t). An example of Eulerian
field ϕ = ϕ(x) independent of time is a fixed orography; u(x, t) could be in this
case, e.g., a horizontal wind velocity field. Conversely, it is the Lagrangian field ϕL

which may be constant (of course, the corresponding Eulerian field Φ will in general
not be constant). We say that the field ϕ is “frozen in the flow”. The associated
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process is called Lagrangian transport. An example is the transport of a dye in an
incompressible flow. In the absence of diffusion, the dye concentration at the current
position xL is equal to the concentration at the initial point x0; the concentration
at a fixed position (Eulerian description), instead, will change with time.

At this point, we may want to be able to switch from an Eulerian to a Lagrangian
description of the flow. The operation is carried out by means of the so-called
material derivative

Dt = ∂t + u(x, t) · ∇. (2.9)

We verify in fact that

∂tϕL(t|x0, t0)|t0=t = [∂t + uL(t|x0, t0) · ∇xL
]ϕ(xL(t|x0, t0), t)|t0=t

= [∂t + u(x0, t) · ∇x0 ]ϕ(x0, t).

More concisely,

∂tϕL(t|x, t0)|t0=t = Dtϕ(x, t) (2.10)

(note that the time t0 is a label and can be chosen at will). The term u · ∇ in Eq.
(2.9) is called advection, which is the contribution to the variation of ϕL from the
motion of the fluid parcel along the Lagrangian trajectory xL. In the case ϕ is frozen
in the flow, ϕ̇L = 0 ⇒ Dtϕ = 0, which implies

∂tϕ(x, t) = −u(x, t) · ∇ϕ(x, t). (2.11)

The material derivative describes the evolution of a field in the reference frame of
the moving fluid element. By construction, it is therefore unaffected by the Galilean
shift (x, t) → (x′, t) = (x−Ut, t):

(∂t + (u+U) · ∇)ϕ(x−Ut, t) = (∂t + u · ∇)ϕ(x′, t). (2.12)

2.2 Lagrangian transport of a vector field

In the following, we will have to deal a lot with the transport of vector quantities,
such as the fluid velocity and the vorticity. Other situations in which one is faced
with the issue of vector transport is that of electrically conducting fluids, due to the
role potentially played by electric density currents and magnetic fields.

The transport of a vector field presents several subtleties. We discuss them one
by one.

2.2.1 Parallel transport

The simple way to extend the idea of transport to the case of a vector field v(x, t)
is to require that vL(t|x0, t0) = v(xL(t|x0, t0) along fluid trajectories. While the

8



stem of vector vL is dragged along the trajectory xL, neither the magnitude nor the
direction of the vector changes; the operation is usually called parallel transport.
Parallel transport is trivial in Euclidean space, as we can utilize global Cartesian
coordinates which translate the condition v̇L = 0 into identical conditions on the
components, v̇Li = 0. However, there are situations of practical interest in which
the fluid flow develops in a curved space. Examples include the fluid flow on a cell
surface or the wind dynamics at scales such that the earth’s curvature cannot be
disregarded.

Consider the transport of a vector on the earth’s surface. Take a vector v directed
north in Rome and displace it parallel to itself to Chicago, which lies roughly at the
same latitude as Rome but at the longitude ϕ ≃ π/2 west.

Indicate with vp the new vector. From space, the two vectors look identical, but
while in Rome v points north, in Chicago, it points north-west: the component of
v on the equatorial plane, which in Rome is perpendicular to the earth parallel in
Chicago is tangent to it. The direction of the meridian line, however, has changed.
This simple observation informs us that to describe in coordinate the transport of a
vector at distance such as that from Rome to Chicago, we need to work with global
coordinates that are necessarily curvilinear.

We see from Eq. (2.10) that the term that causes trouble in expressing the
condition v̇L = 0 in coordinates, is the advection u · ∇v. The trouble comes from
the dependence of the basis vectors ei on the coordinate; we need to be careful
in this case to distinguish covariant indices (those of the basis) and contravariant
indices (those of the components); we thus adopt the summation convention and
write

v = viei, ∇ = ei∂i, ei · ej = δij, (2.13)

where we have introduced the contravariant basis ei to guarantee that the differential
of a scalar remains a scalar:

dx · ∇f = dxi∂if ≡ df. (2.14)

We can now evaluate the components of the advection term:

(u · ∇v)i = [uk∂kejv
j]i = uk∂kv

j + ukvj(∂kej)
i = uk[δij∂k + Γi

jk]v
j, (2.15)

where

Γi
kj = (∂kej)

i ≡ ei · (∂kej) (2.16)

is called the Christoffel symbol and the operator [δij∂k+Γi
kj]v

j is called the covariant
derivative.

A well-known property of covariant derivation is that transport of vector parallel
to itself takes place on geodesic curves. In fluid mechanics notation this corresponds
to the statement that the Lagrangian trajectories of a flow field obeying the law
Dtu = 0 are geodesics.
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Figure 1: Comparison of parallel transport (left) and Lagrangian transport (right)
of a vector field v by the flow u.

We shall confine our analysis in the rest of these notes to phenomena taking
place at such a scale that effects from a possible curvature of the embedding space
can be disregarded; we will then adopt Cartesian coordinates throughout, without
distinguishing covariant from controvariant indices.

2.2.2 The Lie derivative

Now that we have been able to clarify the meaning of the advection of a vector
as an operation of parallel transport, we may ask whether parallel and Lagrangian
transport coincide. The fact is that we may interpret a vector field as a derived
object, namely, the set of vectors tangent to a field of streamlines. The differential
vds would represent in this case an infinitesimal segment of a streamline. The
question arises whether Lagrangian transport should refer to the vector v or to
the streamlines of v. The situation is illustrated in Fig. 1: in the case of parallel
transport, one shifts the vector parallel to itself, as from definition; in the case of
streamline transport, the stem and the tip of the vector vds are transported by u
like passive tracers (note that the endpoints of the vector v lie at a given instant
on a streamline of v, which are however points on different streamlines of u). We
shall speak in the second case of Lagrangian transport of the vector field v by u,
and refer to v as a frozen vector field.

An example of a vector field transported parallel to itself is the fluid velocity in
a zero-pressure inviscid flow (Burgers dynamics). Examples of vector fields frozen
in the flow are the vorticity in a zero-viscosity fluid and the magnetic field in a
zero-viscosity zero-resistivity fluid.

Let us derive the evolution equation for a frozen vector field. The operation
is illustrated in Fig. 2. Consider the following infinitesimal displacements, v(x −
u(x)dt, t)dt and v(x, t + dt)dt, produced by the field v. The two coordinates x −
u(x)dt and x are the coordinates of the stem of the two displacements. The tip
of the initial displacement vector is located at x− u(x)dt+ v(x− u(x)dt, t)dt and
translates by an amount which can obtained to the given order in dt by evaluating u
at the arrival point x+ v(x, t)dt (see Fig. 2). The final displacement v(x, t+ dt)dt
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x

Figure 2: Graphical derivation of the evolution equation for a frozen vector field
v. The curved lines are the streamlines of u.

is therefore the vector sum

v(x− u(x)dt, t)dt+ u(x+ v(x, t+ dt)dt)dt− u(x, t)

≃
{
[v(x, t)− u(x, t) · ∇v(x, t)dt+ v(x, t) · ∇u(x)dt

}
dt.

We thus obtain for the time derivative of a vector field frozen in u,

∂tv(x, t) = −u(x, t) · ∇v(x, t) + v(x, t) · ∇u(x, t) := −Luv(x, t). (2.17)

The operator Luv = u ·∇v−v ·∇u is called the Lie derivative of v in the direction
of u.

2.3 Vorticity, rate of strain and compression rate

The dynamics of fluids are governed by the stresses generated by the relative motions
within the fluid. In the case of a simple fluid, the stresses are generated locally by
the fluid velocity gradients, and can be analyzed in Cartesian coordinates even if
the flow were to evolve on a curved surface.

Let us decompose the tensor ∇u into its trace, symmetric zero-trace, and anti-
symmetric components,

∂iuj =
δij
3
∇ · u+

1

2

(
∂iuj + ∂jui −

2δij
3

∇ · u
)
+

1

2

(
∂iuj − ∂jui

)
. (2.18)

We can express the antisymmetric component (1/2)[∇u − (∇u)t] in terms of the
vorticity

ω = ∇× u, (2.19)

∇u− (∇u)t =

 0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

 . (2.20)
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A B C

Figure 3: Sketch of 2D flows that are locally pure strain (A), pure vortical (B) or
pure compressional (C).

dS

dS δ tu

S(t)

u

S(t+  t)δ

Figure 4: The motion of the boundary of a fluid volume induced by the flow u.

The symmetric zero-trace component of ∇u

ṡij = ∂iuj + ∂jui −
2δij
3

∇ · u (2.21)

is called the rate of strain, and the remaining trace component ∇ · uδij (taken with
a minus sign) is called the compression rate.

We show in Fig. 3 the streamlines of two-dimensional (2D) velocity fields which
are locally purely vortical, purely compressional, or purely strain flow. A flow with
strain s and zero compression and vorticity is u1 = sx2, u2 = sx1. We can obtain
the streamlines of the flow from Eq. (2.6), ẋ1 = sx2, ẋ2 = sx1 ⇒ 2dx2

1/dt = sx1x2,
2dx2

2/dt = sx2x1 ⇒ x2
1 − x2

2 = const., which is the equation for the hyperboles in
case A of Fig. 3. The same procedure yields for a vortical flow x2

1 + x2
2 = const.,

which corresponds to the circular orbits in case B of Fig. 3 (note that the flow field
describes a fluid that rotates rigidly with angular frequency ω; such a flow is often
called rotational, leaving the term vortical to situations in which ω varies with the
distance from the origin).

The compression rate gives the volume change of a portion of the fluid induced
by the flow u; we illustrate the situation in Fig. 4. Indicate with dA the oriented
surface element of fluid volume V . In the time interval δt the volume V changes by

12



the amount

V (t+ δt)− V (t) ≃ δt

∫
A(t)

dA · u(x, t) = δt

∫
V (t)

dV ∇ · u(x, t). (2.22)

Therefore, the compression rate of a fluid element is precisely

−V̇ /V = −∇ · u. (2.23)

A flow for which ∇ · u = 0 is called incompressible.

2.4 Application to Hamiltonian dynamics

We can utilize the techniques developed in this chapter to characterize Hamiltonian
flows. It is the flow of phase points in the 2N-dimensional phase space labeled by
coordinates (pi, qi), i = 1, . . . N , where N is the number of degrees of freedom of the
system. In the case of a system with just one degree of freedom, the phase points
are identified by the 2D vector

x =

(
p
q

)
(2.24)

Hamilton’s equations define the fluid velocity

uH = ẋ =

(
−∂qH
∂pH

)
, (2.25)

where H = H(x) ≡ H(p, q) is the Hamiltonian of the system. Hamilton’s equations
can be written in the form

uH
i = Jji∂jH, (2.26)

where

J =

(
0 1
−1 0

)
(2.27)

is called the symplectic matrix. In our fluid dynamics framework, uH = uH(x, t) is
an Eulerian field defined through Eq. (2.25) from the Lagrangian quantity ẋ.

We verify that the Hamiltonian flow is incompressible,

∇ · uH = −∂p∂qH + ∂q∂pH = 0, (2.28)

which is the content of Louville’s theorem.
If the Hamiltonian does not depend explicitly on time, the Hamiltonian flow is

itself independent of time; let us take the specific example of the pendulum,

H =
p2

2MR2
−MgR cos θ, θ ≡ q. (2.29)

13
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Figure 5: Phase portrait of the pendulum.

We show the streamlines of the flow in Fig. 5. We see that the stable equilibrium
points at θ = 2nπ correspond to regions of vortical flow, while the unstable equilib-
rium points at θ = (2n+1)π correspond to strain flow, no sinks or wells in the form
described in case C of Fig. 4 are possible due to the incompressibility of the flow.

One can write Hamilton’s equations in terms of Poisson brackets,

ẋi = {H, xi}, {f, g} = Jij∂if∂jg ≡ ∂pf∂qg − ∂qf∂pg. (2.30)

We can use the Poisson brackets to determine the variation of a field f measured
by a phase point transported by the Hamiltonian flow u,

ḟ = ∂tf + uH · ∇f = ∂tf + Jij∂iH∂jf = ∂tf + {H, f}. (2.31)

We can express energy conservation for a time-independent Hamiltonian H in the
language of Poisson brackets,

Ė ≡ Ḣ = {H,H} = (Jij∂iH)∂jH = uH · ∇H = 0, (2.32)

which tells us that the streamlines of the Hamiltonian flow are the level curves of
H. From a fluid mechanics point of view, we can say that H is frozen in the phase
space flow determined by the Hamilton equations. Indeed, since the streamlines of
the phase-space flow are the level curves of H, that function will be constant also
when viewed as an Eulerian field, ∂tH = 0.

Something more interesting occurs if we take H(p, q) as the initial condition of
a time-dependent field HK(p, q, t) undergoing Lagrangian transport by an auxiliary
Hamiltonian K(p, q). The field HHK is therefore frozen in the field uK

i = Jji∂jK.
We shall discover that the time evolution of the Eulerian field uHK

i = Jji∂xj
HK is

obtained as the Lie derivative of uHK by uK , which is not surprising, considering
that, as we have said, the streamlines of uHK are the level curves of HK .

The condition that the field HK is frozen in the velocity field uK can be written
in terms of Poisson brackets as

ḢK = ∂tH
K + {K,HK} = 0. (2.33)
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From here we readily obtain the time evolution of the Eulerian field uHK (x, t),2

∂tu
HK
i = Jji∂j∂tH

K = −Jji∂j{K,HK}
= −Jji∂j[Jlm(∂lK)∂mH

K ]

= −Jji[(∂j∂lK)Jlm∂mH
K + (Jlm∂lK)∂j∂mH

K ]

= −Jji[−(∂l∂jK)uHK
l + uK

m∂j∂mH
K ]

= uHK
l ∂lu

K
i − uK

m∂mu
HK
i

We can rewrite the result in terms of Lie derivatives as

∂tu
HK = −uK · ∇uHK + uHK · ∇uK ≡ −LuKuHK , (2.34)

which confirms the statement that the velocity field uHK is frozen in uK .

2.5 Suggested reading

• S. Childress, “Topological fluid dynamics for fluid dynamicists”, https://www.math.nyu.edu/ chil-
dres/tfd.pdf

2We stress that the expression does not coincide with u̇HK , which is a Lagrangian quantity
describing the motion of a phase space point in the velocity field generated by HK .
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3 Conservation of mass and momentum

The dynamics of a fluid is described by equations that are essentially local conser-
vation laws for the mass, the momentum, and the energy.

Conservation of mass is expressed locally by imposing the condition that the
mass Ma of a fluid element stays constant. We can write the condition in terms
of the mass density along a fluid trajectory ρL and the volume VL of the element,
M ≃ VLρL,

0 = Ṁ ≃ VLρ̇L + ρLV̇L (3.1)

An Eulerian version of this equation can be obtained by setting in xL(t|x0, t0) and
vL(t|x0, t0) the labeling time t0 equal to t, and then using Eqs. (2.10) and (2.23) to
set ρ̇L = Dtρ and V̇L = V∇·u. From Eq. (3.1), we thus get the continuity equation

Dtρ+ ρ∇ · u ≡ ∂tρ+∇ · (ρu) = 0. (3.2)

We see that if the flow is incompressible. The density is “frozen” in the flow. Imagine
an oil emulsion in water. The density ρ(x, t) changes in response to the passage of
oil droplets at x (if the fluid is in motion), however, the density ρL(t) following the
droplet remains constant.

In the absence of chemical reactions, the number density n(x, t) obeys an equa-
tion identical to Eq. (3.2). Otherwise, we ought to include in Eq. (3.2) sources
and sinks, and write separate equations for the different species, taking into account
the diffusion of the different species across the fluid element boundaries. Difficulties
in the identification of mass and matter (molecule) fluxes also arise in a relativis-
tic context, since in this case we could equally interpret ρ and Jm = ρu, as either
the component of a 4-current or a momentum density (the time component of the
stress-energy tensor). To avoid this sort of trouble, we shall assume throughout the
notes that relativistic effects are negligible.

We can utilize the procedure adopted in the derivation of Eq. (3.2) to derive a
local conservation law for the momentum. The starting point is the second law of
Newton

M u̇L(t) = F(t), (3.3)

where F is the force on the fluid element. If the volume V is sufficiently large, it is
possible to separate in F a contact force component at the boundary of V . Let us
consider an outward-oriented surface element dA on the boundary of V. We could
interpret the surface force dFS on dA as a momentum flux through that surface
element. In the case of the flow of a scalar quantity, such as the mass, the density
current is a vector Jm; in the case of a vector, such as the force F, the associated
density current must be a second-order tensor σ. Only in this way can σ · dA be a
vector. Indicate with σij the momentum current density entering V , in such a way
that

dFS = σ · dA; dF S
i = σijdAj. (3.4)
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The tensor σ is called the stress tensor of the fluid. The total force on V will be
therefore

F = Fext + FA = Fext +

∫
∂V

dA · σ, (3.5)

where Fext is the contribution to F from forces mediated by long-range fields such
as gravity (note that such forces could be generated by portions of the fluid at
macroscopic separations from V ). We can convert the surface integral in FS into a
volume integral,

∫
∂V

dA · σ =
∫
V
dV ∇ · σ, and introduce force densities f = F/V

and f ext = Fext/V . Equation (3.5) then becomes

f = f ext +∇ · σ. (3.6)

We can now substitute Eq. (3.6) into Eq. (3.3) and exploit Eq. (2.10) to switch to
an Eulerian description. The result is the conservation law for the momentum

ρ(∂t + u · ∇)u = ∇ · σ + f ext. (3.7)

Proceeding as in the case of the tensor ∇u, when introducing vorticity, strain,
and compression rate, we decompose the stress tensor σ into its trace, symmetric
zero-trace and antisymmetric components,

σij =
1

3
σllδij +

1

2

(
σij + σji −

2

3
σllδij

)
+

1

2

(
σij − σji

)
. (3.8)

The terms in the decomposition are associated with separate contributions to the
surface force on V . We see immediately that the trace component produces a force
contribution (1/3)σlldA normal to the surface element, whose magnitude is indepen-
dent of the orientation of dA. In other words, we are dealing with a pressure force.
The symmetric traceless component contributes normal and tangential forces. The
antisymmetric ones only contribute tangential forces. We see that the symmetric
traceless component tends to stretch V , while the antisymmetric induces rotation
of the fluid element. We illustrate the situation in Fig. 6.

Let us focus on the rotation component. Indicate with a the characteristic scale
of V . The contribution to FS from the antisymmetric stress component σas

ij =
(1/2)(σij − σji) has magnitude F as ∼ a2T as. This induces a torque

T ∼ aF as ∼ a3T as (3.9)

on V . On the other hand, the inertia tensor of V is

Iij =

∫
V

dV rirjρ ∼ a5ρ, (3.10)

where r is evaluated with respect to some point in the interior of V . Comparison of
Eqs. (3.9) and (3.10) tells us that T as generates a response in the fluid on a time
scale I/T ∼ a2 that vanishes in the continuum limit.

Any antisymmetric component of the stress tensor that is locally generated is
going to be destroyed on this time scale. We thus reach the conclusion that the
stress tensor does not have an antisymmetric component.
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Figure 6: Examples of surface force contributions dFS from the trace (A), the
symmetric traceless (B) and antisymmetric (C) components of the stress tensor; in
the example considered, we have taken σ11 = σ22 = σ33, in such a way that the
diagonal terms of the symmetric traceless component are identically zero.

3.1 Suggested reading

• P. Kundu, I.M. Cohen and D.R. Dowling, “Fluid mechanics, Secs. 4.1-7 (Ac.
Press 2015)

• L.D. Landau, E.M. Lifshitz, E.M. Koevich and L.P. Pitaevskii, “Theory of
elasticity” Vol. 7, Secs. 1 and 2 (Elsevier, 1986)
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4 Constitutive laws

To describe the state of a fluid, we must know the spatial profile of The fluid density,
velocity, and temperature (in the case of a mixture, or a conducting fluid, we also
need the concentration and the current density of the different species). To fix the
dynamics, we need closed expressions relating the stress tensor with these quantities
and their gradients. A relation fixing such dependency is called a constitutive law.

We will see in the next sections that if the microscopic dynamics are sufficiently
simple and the fluid is not too far from equilibrium, the macroscopic dynamics is
local, and it is possible to carry out a gradient expansion, σij = σ(0)

ij + σ(1)

ij + . . .,
where

σ(0)

ij = σ(0)

ij (ρ, T ), σ(1)

ij = µu
ijlm(ρ, T )∂lum + µρ

ijl(ρ, T )∂lρ+ µT
ijl(ρ, T )∂lT, (4.1)

and higher-order terms take into account higher-order derivatives as well as larger
powers of the different derivatives.

If it is possible to stop the gradient expansion to the first order, we say that the
fluid is Newtonian. We say that the fluid is simple if it is also isotropic, in which
case the stress tensor has the form

σ(0)

ij = −Pδij, and σ(1)

ij = µB∇ · uδij + µṡij, (4.2)

where P is the pressure, and µB and µ are called the bulk and dynamic viscosity.
Since σij is always symmetric, the stress tensor of a simple fluid is by construction
independent of vorticity.

4.1 Condition of local thermodynamic equilibrium

The description of a fluid in terms of temperature, density, and velocity rests on the
fact that the fluid is not too far from equilibrium, which means that the velocity
distribution of the molecules is close to Maxwellian, and concepts from equilibrium
thermodynamics—in particular temperature—at least locally, continue to apply.
Local thermodynamic equilibrium is only possible if the spatial inhomogeneity of the
fluid at scale λ is small, as molecular collisions could not smooth out inhomogeneities
at scales below λ. The condition of slow space variation of macroscopic quantities, in
turn, requires the macroscopic dynamics to be slow and thus give time to collisions
to counteract the formation of sharp gradients.

The magnitude of the mean free path λ is determined by the geometry of the
collision process. Let r0 be the characteristic size of a molecule, and define the
molecular volume n−1 ≡ a30 as the typical volume in the gas (or liquid) containing
just one molecule. The cross-section of a molecule is r20, and the probability that
a second molecule crossing the molecular volume of the first one hits that molecule
is ∼ (r0/a0)

2. Typically, a molecule crosses ∼ (a0/r0)
2 molecular volumes, each of
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length a0, before making a collision. The total distance traveled defines the mean
free path

λ = a30/r
2
0 =

1

nr20
. (4.3)

The condition of local thermodynamic equilibrium can be expressed in terms of the
Knudsen number

Kn =
λ

l
∼ 1

nr20l
≪ 1. (4.4)

Since λ ≥ a0, the condition for local thermodynamic equilibrium l ≫ λ is stronger
than the one for the continuum l ≫ a0, discussed in Sec. 1.

4.1.1 Digression into plasma physics

Hot plasmas provide an example of a system for which the continuum limit is satisfied
but local equilibrium is not.

Due to the long-range nature of electromagnetic interactions, the collision cross-
section of the charged particles in a plasma is not well defined. A possibility is to
introduce the concept of “hard” collision, as a scattering event involving a substantial
change of direction in the motion of the particles. The total kinetic and potential
energies of the two particles are going to be of the same order of magnitude when
the particle get close. Indicate with e and m the charge and reduced mass of the
particles (for a typical plasma, in which the lighter particles are the electrons, m is
the electron mass). We thus define the minimum separation r(v) in a hard collision
as

mv2 ∼ e2

r(v)
(4.5)

and identify with r(v) = e2/(mv2) the effective interaction radius of the particles
at relative velocity v. By taking r0 ∼ r(vth), with vth the thermal velocity of the
electrons, we get the estimate of the mean free path

λ =
1

nr20
∼ 1

n

(mv2th
e2

)2

∼ n
(kBT

e2

)2

, (4.6)

where kB is the Boltzmann constant.
We point out that for our estimate to be correct, the plasma must be sufficiently

dilute for binary collisions to be dominant; in other words, the plasma must be
weakly correlated. This requires r0 ≪ a0, which together with the continuum limit
condition nl3 ≫ 1 implies

kBT

e2
≫ n1/3 ≫ l−1. (4.7)
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Figure 7: Sketch of the microscopic mechanisms responsible for pressure (A) and
viscous (B) forces at the surface of a fluid element. All the velocities are measured
in the reference frame of dA.

A plasma may satisfy the continuum and weak correlation conditions in Eq. (4.7);
however, if its temperature is too high, the effective Knudsen number λ/l will be so
large that local thermal equilibrium is impossible. A hot plasma would not admit
a fluid description and a kinetic theory approach based on the use of the Vlasov
equation would be required.

4.2 Microscopic interpretation of pressure and viscosity

To determine the law of state P = P (ρ, T ) and the functional form of the viscosity
coefficient µ = µ(ρ, T ), we must have some information on the microscopic structure
of the fluid. The operation is possible for Kn ≪ 1, in which case we can describe
the pressure and viscous forces acting on a fluid element V as the result of a process
of deposition of momentum by the molecules crossing the boundary of that volume.
The process takes place in a layer of thickness λ at the boundary of the fluid element,
as described in Fig. 7. Case A of Fig. 7 illustrates how pressure is generated.

Molecules on the right of dA travel to the left with velocity −vth, and deposit
momentum −mvth in the layer of thickness λ to the left of dA (consider, for sim-
plicity, the case of a single molecular species). At the same time, molecules on the
left travel to the right with velocity vth and deposit momentum mvth out of V ,
thus contributing other −mvth to the balance for V . The current from right to left
and the one from left to right both have magnitude ∼ nvthdA/2 (one-half of the
molecules to the right travel to the left, and one-half of those to the left travel to the
right. The total flow of momentum to the left, which is the portion of the normal
component of FS exerted on dA, is therefore dF⊥ ∼ nmv2thdA, from which we get
the law of state

P ∼ nmv2th ∼ nKBT, (4.8)

where kB is the Boltzmann constant. We could turn the order of magnitude relation
into an equality by a more careful analysis based on kinetic theory.
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Figure 8: Mechanism for the generation of a heat flux. A positive temperature
gradient is present such that v′′th > v′th and at the same time n′′ < n′, in such a way
that P ′′ = P ′. But this implies n′v′3th < n′′v′′3th , which means that there is a heat flux
to the left.

The mechanism for viscous force generation is illustrated in Fig. 7B. We are
interested in this case in the tangential forces produced by the transfer of vertical
momentum across dA.

Suppose that there is a horizontal gradient ∂1u2 > 0. Molecules that have
equilibrated at distance λ to the right of dA will have average vertical momentum
mλ∂1u2. The molecular current from right to left will be as before ∼ nvthdA/2.
At the same time, molecules that have equilibrated at distance λ to the left of dA
will have average vertical momentum −mλ∂1u2 and the current to the right will be
∼ nvthdA/2. Therefore, the total flow of momentum to the left, which is the portion
of the tangential component of FS exerted on dA will be

dF ∥ ∼ nmvthλ∂1u2dA, (4.9)

corresponding to the viscous stress

σ12 = µ∂1u2, µ ∼ nmvthλ ∼ mvth
r20

. (4.10)

The dynamic viscosity of a gas is independent of its density. The experimental
verification of this fact by J.C. Maxwell provided the first evidence in support of the
kinetic theory of gases. By combining with Eq. (4.10) with Eq. (5.4), we obtain for
the kinematic viscosity

ν ∼ λvth. (4.11)

A similar mechanism of generation is at play in the case of heat diffusion as illus-
trated in Fig. 8. Suppose ∂1T > 0, which means T ′ ≃ T −λ∂1T and T ′′ ≃ T +λ∂1T ,
and therefore also v′th ≃ vth − (vth/(2T ))λ∂1T and v′′th ≃ vth − (vth/(2T ))λ∂1T . At
the same time, the equilibrium of pressure forces requires n′T ′ = n′′T ′′ = nT . The
heat current density to the right is ∼ n′v′thkBT

′/2 = nv′thkBT/2 and the one to the
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Figure 9: Mechanical analogs of a Maxwell fluid (A) and a Kelvin-Voigt solid (B).

left is ∼ −n′′v′′thkBT
′′/2 = −nv′′thkBT/2. The total heat current density along x1 is

therefore

q1 ∼ nkBT (v
′
th − v′′th)/2 ∼ −κnkB∂1T, κ ∼ λvth. (4.12)

The diffusivity κ is typically of the same order as the kinematic viscosity ν.

4.3 Non-Newtonian fluids

Non-Newtonian fluids comprise a vast zoo of behaviors. Some materials have a
viscosity coefficient that depends on the magnitude of the strain rate. The viscosity
of these materials may increase with s (shear-thickening materials, such as corn
starch) or decrease with s (shear-thinning materials, such as sand in water). In
some cases, memory effects may be present, and the viscosity may depend on the
duration of the stress.

Other continuous media are characterized by a stress tensor depending on the
strain rate and the strain. We speak in this case of viscoelastic materials. We can
distinguish two main classes: materials in which the elastic component of the stress
appears as transient, with viscous stresses dominating the steady-state dynamics,
and materials in which viscous stresses are significant in the transient, and elas-
tic forces are dominant at the steady-state. Materials in the first class are called
Maxwell fluids (or solid-like fluids); materials in the second class are called Kelvin-
Voigt solids (or fluid-like solids). Examples in the first class include whipped cream,
mucus, and the silly putty. The second class comprises living tissues and some plas-
tics. A mechanical analog of the dynamics of Maxwell fluids and Kelvin-Voigt solids
is illustrated in Fig. 9.

It is interesting to note that the elastic stress of a solid and the viscous stress
of a fluid have the same functional form, with the compression ∇ · y replacing the
compression rate ∇ · u and the strain sij = ∂iyj + ∂jyi − (2/3)∇ · yδij replacing the
strain rate ṡij = ∂iuj + ∂jui − (2/3)∇ · uδij, where y(t|x0) = xL(t|x0) − x0 is the
dislocation of the solid element with equilibrium coordinate x0.

The mechanical analogs in Fig. 9 allow us to derive constitutive laws for Maxwell
and Kelvin-Voigt materials. The spring and the friction-generating piston-cylinder
assembly in the figure, could be seen as the microscopic components responsible for
the stress at the surface of a fluid element, all assumed to have zero inertia.
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In the case of a Maxwell material, the friction and the spring act in series; at
a steady state, the spring reaches the equilibrium elongation corresponding to the
friction force on the moving piston. In the case of a Kelvin-Voigt material, the two
forces act in parallel; at the stead state, the spring reaches the equilibrium elongation
corresponding to the external forces F on the assembly, while the friction force is
zero.

Identify with subscript S and P the spring and piston components of stress,
strain, and rate of strain. In the Maxwell case, the stress is constant along the chain
(because of zero inertia). Hence

σ = αsA = µṡP , sA + sP = s ⇒ ṡ =
σ̇

α
+

σ

µ
, (4.13)

where α plays the role of elasticity modulus (Lamé coefficient) of the material. In
the Kelvin-Voigt case, the deformations of the spring and cylinder-piston assembly
are equal. Total stress is the sum of the two components

sA = sP = s ⇒ and σ = σA + σP = αs+ µṡ. (4.14)

4.4 Suggested reading

• P. Kundu, I.M. Cohen and D.R. Dowling, “Fluid mechanics, Secs. 4.8-9 (Ac.
Press 2015)
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5 The Navier-Stokes equation

Back to the realm of Newtonian fluids, if the deviations from equilibrium of ρ and
T are weak enough, it is possible to disregard the dependence of µB and µ on ρ and
T and approximate in Eq. (3.7)

∇ · σ ≃ µB∇∇ · u+ µ∇ · ṡ.

The bulk viscosity of most fluids is small and usually disregarded. In this case,
the viscous stress simplifies to

σ(1)

ij = µṡij, (5.1)

and the momentum conservation equation (3.7) becomes

ρ(∂t + u · ∇)u+∇P = µ
(
∇2u+

1

3
∇∇ · u

)
+ f ext, (5.2)

called the Navier-Stokes equation.
To solve the system formed by the continuity equation (3.2) and the Navier-

Stokes equation (5.2), we need a law of state P = P (ρ, T ) and therefore also an
evolution equation for the temperature. We shall deal with the issue in the coming
section. A special case is that of incompressible of. If the density is constant in the
domain, Eqs. (3.2) and (5.2) take the form

∇ · u = 0, (∂t + u · ∇)u+∇P/ρ = ν∇2u+ f ext/ρ, (5.3)

and no temperature equation is needed. The parameter in Eq. (5.3)

ν = µ/ρ (5.4)

is called kinematic viscosity; for water ν ≃ 0.01 cm2/s; for air at sea level ν ≃
0.15 cm2/s. An equation for the pressure can be obtained by taking the divergence
of the second equation,

∇2P + ρ∇ · (u · ∇u) = ∇ · f ext. (5.5)

To solve Eqs. (5.3) and (5.5), we need boundary conditions on both u and P .
Equations (5.3) and (5.5) contain Laplacians of the fields u and P . The boundary
conditions thus involve some combinations of the fields and their normal derivatives.

An analytical solution of the Navier-Stokes equation is not possible, in general,
due to the equation’s nonlinearity. We can estimate the nonlinearity strength from
the relative magnitude of the advection and viscous terms,

u · ∇u ∼ (δu)2

L
, ν∇2u ∼ νδu

L2
, (5.6)
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from which we can form a dimensionless quantity called the Reynolds number

Re =
Lδu

ν
. (5.7)

We can obtain a non-dimensional version of the incompressible Navier-Stokes equa-
tion (5.3) by expressing length velocities and mass in units L, δu and ML = Lρ.
The result is

(∂t̂ + û · ∇̂)û+ ∇̂P̂ =
∇̂2û

Re
+ f̂ ext. (5.8)

For large Re, the flow will typically be turbulent, and velocity fluctuations at a
multiplicity of scales will be generated. There will be, in this case, a multiplicity of
Reynolds numbers

Rel =
lδlu

ν
, (5.9)

giving the relative strength of inertial and viscous forces at the different flow scales.
In the case of a turbulent flow, the scale L and the characteristic velocity

δu ≡ δLu correspond to the scale of the largest eddies, determined by the boundary
conditions of the flow (say, the width of a duct). Typically (as we shall see in the last
section of these notes), Rel is an increasing function of l, thus Re ≡ ReL = maxl Rel.

5.1 Viscous flows

For Re ≪ 1, Eq. (5.3) takes the limit form

ρ∂tu+∇P = µ∇2u+ f ext, ∇ · u = 0. (5.10)

called the Stokes equation. If we disregard transients, the equation reduces to a
balance of viscous, pressure and external forces

∇P = µ∇2u+ f ext, ∇ · u = 0. (5.11)

a regime called creeping flow. Clearly, a creeping flow regime is only possible if the
boundary conditions and external forces vary on a time scale much slower than the
viscous timescale τ = L2/ν, where L is the characteristic scale of the flow.

Linearity of Eq. (5.11) makes analytical progress possible. However, except for
simple geometries, solving Eqs. (5.10) and (5.11) can be laborious. In many cases,
dimensional reasoning is the only viable strategy. We can, e.g., make estimates on
the drag force on a body of size L moving with velocity U in the fluid,

F ∼ L3µ∇2u ∼ µLU. (5.12)

An exact solution of Eq. (5.11) is possible in the case of the Couette flow, which is
the flow between two flat surfaces sliding at constant relative speed U . The geometry
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Figure 10: Sketch of Couette flow (A) and channel flow (B).

of the system is shown in Fig. 10a; we can evaluate the force that is required to
keep the system in motion. Let us assume the gap width is much smaller than its
length. We can thus disregard boundary effects and write u = (u1(x2), 0, 0). Since
the velocity U of the body is constant, the force F exactly balances the viscous and
pressure forces in the fluid. On the other hand, since the fluid does not accelerate,
we must have ∂1P + µ∂2

2u = 0, so that for zero pressure forces,

∂2u1 = constant. (5.13)

We can then impose no-slip conditions (Eq. (8.8)) on the solid surfaces bounding
the gap, and we get

u1(x2) = Ux2/L. (5.14)

From here, we obtain the expression for the drag force

F1 = µAU/L, (5.15)

where A is the area of the body.
Another example of a flow for which a simple description is possible is the channel

flow in Fig. 10b. We have a pressure difference ∆P at the two ends of the interstice
between two flat solid objects. Again, the width of the gap is assumed to be small.
We thus set u = (u1(x2), 0, 0) and impose stationarity,

µ∂2
2u1 = ∂1P = ∆P/X. (5.16)

By imposing no-slip conditions on the surfaces at x2 = 0 and x2 = L, we find the
parabolic flow profile

u1(x2) =
∆P

2µX
(L− x2)x2. (5.17)

The same calculation can be carried out in the case of a flow in a cylindrical pipe
(Poiseuille flow), in which case it is possible to show that

u1(r) =
∆P

4µX
(R2 − r2), (5.18)

where R is the pipe’s radius and r is the radial coordinate.
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5.2 Suggested reading

• P. Kundu, I.M. Cohen and D.R. Dowling, “Fluid mechanics, Secs. 4.8-9 (Ac.
Press 2015)
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Figure 11: Mechanism of the hydraulic lift.

6 Hydrostatics

A fluid in equilibrium conditions obeys hydrostatic balance

∇P = f ext, (6.1)

which descends straightforwardly from the Navier-Stokes equation (5.2). Equation
(6.1) is the content of Pascal’s principle, which states that at equilibrium, there must
be a balance between pressure forces and external forces in the fluid. The solution
of Eq. (6.1) is called the hydrostatic pressure.

We focus again on the case in which f ext = −ρge3 is the gravitational force. In
the case of a constant density fluid, such as, e.g., water, Eq. (6.1 can be integrated
to give

P (x3) = P (0)− x3ρg, (6.2)

which is called Stevino’s law.
Stevino’s law implies the law of communicating vessels, which states that the

water level in the vessels must be identical at equilibrium. The proof is straightfor-
ward: if P0 is the pressure in a point of the fluid at height x3,0, and x3,a and x3,b

are the water levels in vessels a and b, the pressure at the water surface in the two
vessels will be Pa = P0− (x3,a−xx0)ρg and Pb = P0− (x3,b−xx0)ρg. However, since
at equilibrium Pa = Pb = Patm, we must also have x3,a = x3,b. For the same reason,
at equilibrium, the water surface in a tank must be horizontal.

Pascal’s law explains how lifting and pressing devices work; we illustrate the
mechanism in Fig. 11. The pressure on a and b, subtracted of the hydrostatic
contribution ρg(x3,a − x3,b), must be equal. The force on a required to lift the
weight M on b is therefore

Fa =
Ab

Aa

Mg, (6.3)

where Aa and Ab are the areas of the pistons in a and b.
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The same principle behind the hydraulic lift finds a spectacular realization in an
experiment proposed by Pascal himself. Suppose that a barrel is communicating at
the top with a thin and long vertical pipe and that the whole assembly is water-
tight; pour water until the barrel and pipe are both full; the pressure at height x3

in the barrel is P = Patm + (h− x3)ρg, where h is the length of the pipe. We then
see that if h is sufficiently large, the pressure P will eventually cause the barrel to
crack open. The remarkable fact is that the result is independent of the pipe radius
(and therefore of the amount of water in the pipe).

Another physical law that can be derived from Eq. (6.1) is Archimedes’ principle:
an immersed body is subjected to a lift force equal to the weight of the displaced
water. Indicate with Aw and Aa, A = Aw ∪ Aa, the portions of the body surface
below and above the water surface, and with dA the surface-element oriented out of
the body. Let us put the origin of the axes at the water surface, pointing upwards;
the lift force on the body is

F3 = −
∫
A

dA3P (x3) = −Patm

∫
Aa

dA3 −
∫
Aw

dA3(Patm − gρx3)

= gρ

∫
Aw

dA3x3 = gρVw, (6.4)

where Vw is the underwater portion of the body, and where to reach the result we
have exploited

∫
A
dA = 0.

6.1 Suggested reading

• L.D. Landau and E.M. Lifshitz, “Fluid mechanics” Vol. 6, Secs. 3 and 4
(Pergamon Press 1987)

30



7 Conservation of energy

The continuity equation (3.2), the Navier-Stokes equation (5.2), and constitutive
laws Eqs. (4.8) and (4.10) do not form a closed system. We need an additional
equation for the temperature. We obtain such an equation by imposing energy
conservation and separating the contributions from the kinetic and internal energy
of the fluid.

7.1 Kinetic energy balance

An equation for the kinetic energy can be obtained in general form by taking the
scalar product of Eq. (3.7) with u,

(1/2)ρDtu
2 = u · (∇ · σ + f ext). (7.1)

We exploit the continuity equation (3.2) to write Eq. (7.1) as

Dt(ρu
2/2) = −ρu2∇ · u/2 + u · (∇ · σ + f ext). (7.2)

We note the advection term −ρu2∇ · u/2 to RHS of the equation, which does con-
tribute to the balance of kinetic energy KL =

∫
VL

dV ρu2/2 in volume VL following

the fluid. Such a term is not present in Eq. (3.7) because of the condition of zero
momentum advection into a fluid element,

∫
SL

dAL · u =
∫
VL

dV∇ · u = 0. We

exploit Eqs. (4.2) and (5.1), and write

u · (∇ · σ) = −u · ∇P + µu · (∇ · ṡ)
= −∇ · (uP ) + P∇ · u+ µ∇ · (u · ṡ)− µṡ : (∇u)

= ∇ · (u · σ) + P∇ · u− µ||ṡ||2/2, (7.3)

where ||ṡ||2 ≡ sijsij. We substitute the expression into Eq. (7.2) and get

Dt(ρu
2/2) = −ρu2∇ · u/2 +∇ · (u · σ) + P∇ · u− µ||ṡ||2/2 + u · f ext, (7.4)

which we can rewrite in the form

∂t(ρu
2/2) = ∇ · (u · σ − ρu2u/2) + P∇ · u− µ||ṡ||2/2 + u · f ext. (7.5)

Integrating Eq. (7.5) over a fixed volume V yields the balance equation for the
kinetic energy in the volume, K = (1/2)

∫
V
dV ρu2:

K̇ =

∫
∂V

dA · [u · σ − ρu2u/2] +

∫
V

dV [P∇ · u− µ||ṡ||2/2 + u · f ext]. (7.6)

The surface integral to the RHS of the equation accounts for the kinetic energy flow
into V produced by advection and the work by the stress forces on S. The first two
terms in the volume integral describe the conversion of kinetic energy into internal
energy through compression and viscous dissipation. The contribution of viscous
dissipation is always negative. Thus, if an incompressible fluid lies in a tank with
fixed walls, and f ext = 0, K̇ will be negative. Any initial motion in the fluid will
come to a halt.
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7.2 Heat transport

Let us indicate the fluid thermal energy per unit mass with E . The total energy in
a fluid element VL will be, therefore,

EL ≃ VLρ(u
2
L/2 + EL) = KL + Eth

L , (7.7)

where KL = MLu
2
L/2 is the kinetic energy of the fluid element and Eth

L = MLEL.
We can obtain an equation for KL from Eqs. (7.1) and (7.3),

K̇L =

∫
∂VL

dA · u · σ +

∫
VL

dV [P∇ · u− µ||ṡ||2/2 + u · f ext]. (7.8)

The terms to RHS of Eq. (7.8) represent the work on the fluid element by the
viscous stresses and the pressure forces of the rest of the fluid, the mechanical
energy gain and loss from compression and viscous dissipation in VL, and the work
by the external forces. The change of mechanical energy from compression and
viscous dissipation results in a change of opposite sign in the internal energy EL. To
obtain an equation for the latter, we need to take into account the energy flux q
through ∂VL and the possible contribution ρhext to EL from the radiation influx and
the conversion from chemical to thermal energy. We reach the result

ρDtE + P∇ · u = −∇ · q+ µ||ṡ||2/2 + ρhext. (7.9)

We can apply Eq. (7.9) to study the evolution of the internal energy content EL of
fluid element VL transported by the flow. Equation (2.23) and mass conservation
allow us to write

∫
VL

dV (ρDtE + P∇ ·U) = Ėth
L + PV̇L, from which we get

Ėth
L + PV̇L = Q̇L, (7.10)

where

Q̇L = −
∫
∂VL

dA · q+ µ

∫
VL

dV [||ṡ||2/2 + ρhext] (7.11)

is the rate at which heat enters the volume element. We recognize in Eq. (7.10) the
first law of thermodynamics applied to the fluid element VL. Of particular interest
is the case that pressure is constant along a fluid trajectory. Equation (7.10) then
becomes

Ėth
L + PVL∇ · VL(ρDtE + P∇ · u) = d

dt
[Eth

L + PVL] = ẆL, (7.12)

where ẆL is the rate of heat transfer to the fluid element at a constant pressure,

ẆL = −
∫
∂VL

dA · q+

∫
VL

dV
[
hext +

µ

2
||ṡ||2

]
. (7.13)
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We can convert the heat transport equation (7.9) to one for the temperature.
The operation is transparent in the case of a uniform quiescent fluid. Equation (7.8)
then takes the form

ρdE = ρhextdt = ncV kBdT, (7.14)

where cV is the specific heat per molecule at constant volume (in the case of a gas
of monoatomic molecules, cV = 3/2). We can then rewrite Eq. (7.9) in the form

ncV kBDtT + P∇ · u = −∇ · q+ µ||ṡ||2/2 + ρhext. (7.15)

We can consider again a constant pressure situation and rewrite the RHS of the
equation in the form

ncV kBDtT + P∇ · u = ncV kBṪL + (P/VL)V̇L

=
[
ncV kB +

P

VL

(∂VL

∂T

)
P

]
ṪL := ncPkBṪL. (7.16)

which defines the specific heat at constant pressure cP . In the case of an ideal gas,
V = NkBT/P ⇒ (P/VL)(dV/dT )P = nkB ⇒ cP = cV + 1.

For Eqs. (3.2), (5.2), and (7.15) to form a closed system of equations, we still
need constitutive equations for the pressure and the heat flux. In the case of a gas,
the pressure obeys the law of state Eq. (4.8), and one usually reabsorbs the constant
cV in the definition of the diffusivity κ (see Eq. (4.12)):

q = −nκkB∇T. (7.17)

As previously done with the viscosity, effects from the spatial variation of nκ are
disregarded, and Eq. (7.9) takes the final form

cVDtT + T∇ · u = κ∇2T + k−1
B [ν||ṡ||2/2 +mhext]. (7.18)

In the case of a fluid at constant pressure,

cPDtT = κ∇2T + k−1
B [ν||ṡ||2/2 +mhext]. (7.19)

Note that in the absence of thermal diffusion and thermal sources, Eq. (7.19) be-
comes DtT = 0, which means that T is frozen in the field u. We shall see in Sec. 11.2
that setting ∇ · u = 0 is not sufficient to impose incompressibility in Eq. (7.18). It
is an example of singular perturbation, as the pressure must large enough to prevent
any volume change of the fluid element. The consequence is that the product P∇·u
is never small and incompressible energy transport is described by Eq. (7.19).

We have seen in Sec. 5.1 that for small Re the advection term the dynamics of
the fluid reduces to a balance of viscous, pressure and external forces. The same
line of reasoning leading for Re → 0 to the Stokes equation (5.10) yields in the case
of Eq. (7.19) the heat equation

cP∂tT = κ∇2T + heat sources,
uLL

κ
= RePr ≪ 1, (7.20)

where L and uL are the characteristic lenght and velocity of the flow and Pr = ν/κ
is called the Prandtl number. For most gases Pr ∼ 1.
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7.2.1 The enthalpy of a fluid

The heat transfer at constant pressure is called enthalpy. We recall here some of its
properties, which will be helpful when dealing with compressible flows. We define
enthalpy from the relation

dW |P = Mdw = (dEth + PdV )P = d(Eth + PV )P = TdS|P ,

where subscript P indicates variation at constant pressure, Eth = EM is the thermal
energy, S is the entropy, and V = V (P, S) is the volume of the fluid element.
Thus, enthalpy is a function of entropy and pressure, W = W (S, P ) ⇒ dW =
T (S, P )dS + V (S, P )dP (in this framework, energy Eth = Eth(S, V ) is understood
as a function of volume and entropy, and dEth = TdS−PdV ). Define the enthalpy
per unit mass w = W/M = E + P/ρ. In isoentropic conditions, we have the useful
relation

dw = dW |S/M = V dP/M = ρ−1dP. (7.21)

7.2.2 The entropy of a fluid

We can rewrite the thermal energy balance equation (7.10) in terms of the entropy
gain in an infinitesimal displacement,

TdSL − PdVL = dEth
L , (7.22)

where we neglect the contribution to dSL from entropy production inside the fluid
element. We can write equivalently

TdsL − Pd(1/ρL) = dEL =
cV kB
m

dTL. (7.23)

where s = S/M . From here we get the entropy change along a fluid trajectory

sf − si =
kB
m

[
cV ln(Tf/Ti)− ln(ρf/ρi)

]
. (7.24)

We can derive an expression for the entropy change as a function of the temperature
and the pressure starting from Eq. (7.21),

TdsL + ρ−1dPL = dwL =
cPkB
m

dTL. (7.25)

The result is

sf − si =
kB
m

[
cP ln(Tf/Ti)− ln(Pf/Pi)

]
. (7.26)
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7.3 An equation for the total energy

We can combine Eqs. (7.2) and (7.9) to derive an Eulerian equation for the total
energy density. We first exploit the continuity equation (3.2) to rewrite in Eq. (7.9)

ρDtE + P∇ · u = Dt(ρE) + (P + ρE)∇ · u
= ∂t(ρE) + u · ∇(ρE) + (P + ρE)∇ · u
= ∂t(ρE) +∇ · [u(P + ρE)]− u · ∇P. (7.27)

We next exploit Eq. (7.3) to rewrite in Eq. (7.2)

Dt(ρu
2/2) + ρu2∇ · u/2− u · (∇ · σ)

= ∂t(ρu
2/2) +∇ · (ρu2u/2) + u · ∇P + . . . , (7.28)

where the dots stand for the viscous and external force terms. We sum Eqs. (7.27)
and (7.28) and obtain

∂t[ρ(u
2/2 + E)] +∇ · [q+ ρu(u2/2 + w)] = f ext · u+ ρhext, (7.29)

where w is the enthalpy per unit mass of the fluid.

7.4 Isoentropic flow

The entropy gain of a fluid element, assuming reversible conditions, reads, from Eqs.
(7.10), (7.11) and (7.22),

ṠL =

∫
VL

dV
−∇ · q+ µ||ṡ||2 + ρhext

T
. (7.30)

By substituting Eq. (7.17) into Eq. (7.30), we can verify that the entropy of an
isolated system does not decrease with time, which is the content of the second
principle of thermodynamics. In the case of an isolated system, we have in fact

Ṡ =

∫
V

dV T−1[nkBκ∇2T + µ||ṡ||2]

≤ nkBκ

∫
V

dV
[
∇ · ∇T

T
−∇T · ∇ 1

T

]
= −

∫
∂V

dA · q
T

+ nkBκ

∫
V

dV
|∇T |2

T 2
, (7.31)

and since q = 0 on ∂V , ṠL ≥ 0.
If the entropy SL of fluid elements is constant along a fluid trajectory, also the

entropy density sL = SL/M is constant, which means that the entropy density s(x, t)
is a frozen field,

Dts = 0. (7.32)
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If s is conserved along the flow, an initially uniform distribution of s will remain
uniform also afterward, and we say that the flow is isoentropic.

In isoentropic conditions, the values of ρ and T along a fluid trajectory are related
by an adiabatic transformation. From Eqs. (2.23) and (7.15) we have

nρcV kBDtT = PDtρ ⇒ ρ2
dT

dρ
=

m

cV kB
P (ρ, T ), (7.33)

which is replaced, in the case of a gas for which P = nkBT , by the familiar relation

ρ
dT

dρ
=

T

cV
⇔ Tρ−1/cV = C, (7.34)

where C is constant throughout the fluid.
Equation (7.33) implies

P = P (ρ, T (ρ)). (7.35)

A flow such that the pressure only depends on the density is said to be barotropic,
and since the implication in Eq. (7.34) goes both ways, the flow will isoentropic
as well. Surfaces at constant pressure coincide in a barotropic flow with those at
constant density, and therefore, through the law of state, also with those of constant
temperature.

7.5 Bernoulli’s equation

The total energy balance equation (7.29) can be specialized to the case of a stationary
ideal flow, for which κ = µ = 0, and there are no external heat sources. If we
furthermore assume that the external force can be derived from a potential, f ext =
−ρ∇Ψ, and exploit the fact that at stationarity the continuity equation (3.2) dictates
∇ · (ρu) = 0, we can write

u · ∇[u2/2 + w +Ψ] = 0, (7.36)

where we recall w = E+P/ρ is the enthalpy per unit mass of the fluid. By integrating
Eq. (7.36) along a field line, we obtain Bernoulli’s equation

u2

2
+ w +Ψ = constant. (7.37)

Of particular interest is the case the flow is incompressible, and Ψ = gx3 is the
gravitational potential. Of course, an incompressible flow can be time-independent
only if ρ is constant in space. Equation (7.37) reads in this case

1

2
ρu2 + P + ρgx3 = constant, (7.38)

which is the original form Bernoulli derived his equation in 1738.
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Figure 12: Control domain for Bernoulli’s principle.

The physical content of Bernoulli’s equation is that the pressure of a fluid flowing
at a constant height increases where it slows down and decreases where it accelerates;
in the case the height of the fluid changes during the motion, the pressure and the
kinetic energy must compensate for the change in potential energy.

The equation has a nice geometrical interpretation illustrated in Fig. 12. A mass
amount ∆M = ρ1A1u1∆t = ρ2A2u2∆t travels the control surfaces A1 and A2 in a
time ∆t. A change of potential energy (Ψ2−Ψ1)∆M takes place in the time interval
in the fluid element bounded initially by A1 and A2. Concurrently, an amount of
work is exerted on the fluid element by the fluid to the left of A1 and an amount
−A2P2u2∆t is exerted on the same fluid element by the fluid to the right of A2. As
a result of the displacement, there is a change ∆M(E2 + u2

2/2) − ∆M(E1 + u2
1/2)

in the sum of the kinetic and internal energy of the fluid element. Imposing energy
conservation yields, in the absence of tangential stresses at the boundaries,

∆M(Ψ1 + E1 + u2
1/2)−∆M(Ψ2 + E2 + u2

2/2) + (P1A1u1 − P2A2u2)∆t = 0,

which implies Bernoulli’s equation (7.37).
Combining Stevino’s law and Bernoulli’s equation allows us to derive Torricelli’s

law, which gives the speed of water out of an orifice in a tank as a function of the
height h of the water column above the orifice. The pressure at the water surface and
outside the orifice equals the atmospheric pressure Patm (in this and the following
examples, we disregard the change of Patm at the scales under consideration). Inside
the tank, the pressure at the orifice level, from Eq. (6.2), equals Patm + ρgh, and
the fluid velocity is zero. Bernoulli’s equation (7.38) then implies Patm + ρgh =
Patm + (1/2)ρu2, where u is the flow velocity just out of the orifice. We thus get

=0u

=PatmP

Patm (stagnation point)

Manometer

=u U
U

=P + (1/2)ρU2

Figure 13: Schematics of the Pitot pipe
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Figure 14: The Magnus effect.

Torricelli’s law

u =
√

2gh. (7.39)

The Pitot pipe is an example of a device that works thanks to Bernoulli’s law.
We illustrate the mechanics of the device in Fig. 13. The Pitot pipe allows one
to determine the flow velocity of the fluid from the pressure difference generated in
two channels: one facing the flow, in the so-called stagnation point, where the
fluid velocity is zero, the other tangent to the flow, where the fluid velocity is
approximately equal to its value far from the device.

Another application of Bernoulli’s equations is the explanation of the Magnus
effect. The effect allows a football player to make a ball follow a curved trajectory
by giving the ball a spin. We illustrate the idea in Fig. 14, which depicts a ball flying
to the right with velocity U, spinning counterclockwise, and consequently subjected
to an upward lift force F.

In the reference frame of the ball, the air approaches the ball with speed −U;
when it gets close, however, it slows down and tends to be dragged along by the
spinning ball. The air on top of the ball will flow faster than the air below; by
Bernoulli’s equation, the velocity decrease of the air along its streamlines must be
compensated by an increase the pressure, which is the strongest under the ball; the
result is a lift force F pushing the ball upwards.

The explanation of the Magnus effect provided by Bernoulli’s equation has several
limitations. In the first place, the air, to feel the drag of the rotating ball, must have
finite viscosity. This, however, violates the hypothesis at the basis of Bernoulli’s
equation, that the flow is inviscid. A second difficulty is that the flow near the
ball becomes turbulent and thus is not stationary, which is problematic since the
turbulence-induced drag on the ball may have a lateral component and contribute
to the lift.

Limitations in the applications of Bernoulli’s equation, similar to the one just
discussed, arise in several contexts. As a rule of thumb, Bernoulli’s equation ap-
proach allows a qualitative understanding of a process but often falls short when
the goal is quantitative estimates.

We conclude the section by noting that Eq. (7.29), which stands at the basis
of Bernoulli’s law, is also valid for viscous fluids, suggesting that we could extend
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Bernoulli’s law to non-ideal conditions, provided the strain is zero at the ends of
the control domain. We shall consider such a situation in Sec. (10.3) when dealing
with shock waves. Note that if the flow is compressible, knowing the pressure and
the vertical coordinate at the ends of the domain does not fix the fluid velocity,
as we need to know the density. Once the pressure and the density are fixed, we
could determine the fluid velocity and, through Eq. (7.26) and the equation of
state, the entropy. We immediately realize that entropy is not conserved, as viscous
dissipation and other processes may lead to entropy production in the central part
of the control domain.

7.6 Suggested reading

• L.D. Landau and E.M. Lifshitz, “Fluid mechanics” Vol. 6, Secs. 2, 5, 6 and
16 (Pergamon Press 1987)

• P. Kundu, I.M. Cohen and D.R. Dowling, “Fluid mechanics, Secs. 4.12-16
(Ac. Press 2015)
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8 Ideal hydrodynamics

We say that a fluid is ideal if its viscosity equals zero. Unfortunately, the zero
viscosity limit of the Navier-Stokes equation (5.2) is singular, which means that the
zero viscosity limit of a solution of the Navier-Stokes equation does not coincide, in
general, with the solution of the zero-viscosity version of that equation, called the
Euler’s equation

ρDtu+∇P = f ext. (8.1)

Identifying a large Reynolds number flow with an ideal flow is thus problematic,
and vorticity plays crucial role. The key issue is the dynamics of the fluid near solid
obstacles, which calls back the question of how to impose boundary conditions on
the flow.

Consider a fluid of arbitrarily small but non-zero viscosity flowing in the vicinity
of a fixed solid obstacle, and consider a portion of the surface of the solid, sufficiently
small to be approximated by its tangent plane, which we take to be the x1x2 plane.
Near the body, the flow is almost parallel to the body’s surface and is a linear
function of x3. Taking the flow locally along x1, u = (αx3, 0, 0), which corresponds
to values of the viscous stress and the viscosity σ13 = αµ and ω = (0, α, 0).

What happens in high Reynolds number flows is that the velocity gradient tends
to concentrate in a boundary layer whose thickness decreases with the viscosity. In
the case of slowly varying flows, the boundary layer thickness l can be estimated
from the Navier-Stokes equation (5.2) as the distance from the body where inertia
and viscous dissipation become of the same order, l ∼ ν/U , where U is the velocity
scale of the flow relative to the body. On the other hand, the viscous dissipation
per unit area and unit mass is, from Eq. (7.9), lν||ṡ||2 ∼ νU2/l ∼ U3, which tells
us that even though the thickness of the boundary layer tends to zero with the
viscosity, the viscous dissipation (and hence the drag) remains finite. We note that
the viscous boundary layer is not stationary. We can convince ourselves of this
by considering that viscosity diffuses momentum away from the body surface while
advection carries the fluid longitudinally. For a body of size L, diffusion acts for a
time ∼ L/U , which yields the diffusion length lν ∼ (νL/U)1/2 = Re−1/2L. Indeed,
the situation is more complicated. One can show that the viscous boundary layer
is unstable, and the flow is not parallel to the body surface, becoming turbulent in
the process. The boundary layer then turns into a tangle of thin vortex filaments
that are transported away from the body at a rate much higher than that provided
by viscosity, and end up filling a significant portion of the fluid volume.

The upshot of the present discussion is that zero viscosity does not imply zero
viscous dissipation. Qualitative estimates of the kind obtained in the case of the
Magnus effect discussed in Sec. 7.5 are nevertheless possible if turbulence remains
confined to a limited portion of the fluid, and the flow could be treated as ideal away
from solid obstacles and the turbulence in their proximity.
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8.1 Potential flows

The velocity field of a vorticity-free flow can be written as the gradient of a scalar
potential

u = ∇Φ. (8.2)

We speak in this case of a potential flow. If the fluid is barotropic, and the exter-
nal force can itself be derived from a potential, f ext/ρ = −∇Ψ, the Navier-Stokes
equation can be converted into an equation for the potential

∂tΦ +
1

2
|∇Φ|2 + w +Ψ− 4

3
ν∇2Φ = constant, (8.3)

where we have exploited the relation

u · ∇uj = (∂iΦ)∂j∂iΦ = ∂j[(∂iΦ)∂iΦ]− (∂j∂iΦ)∂iΦ

= ∂j[(∂iΦ)∂iΦ]−
1

2
∂j[(∂iΦ)∂iΦ] =

1

2
∂j|∇Φ|2, (8.4)

together with the fact that in barotropic conditions ρ−1dP = dw, where w is the
enthalpy per unit mass. We note that the constant in Eq. (8.3) may still depend
on time; such time dependence would produce a contribution to Φ, which is time-
dependent but constant in space, and thus does not modify u.

Equation (8.4) tells us that, in barotropic conditions, a vorticity-free initial con-
dition produces zero curl terms in the Navier-Stokes equation. A flow with zero
vorticity initially will thus remain vorticity-free at later times.

Equation (8.3) takes a simple form in the incompressible case

∂tΦ +
1

2
|∇Φ|2 + P

ρ
+Ψ = constant, ∇2Φ = 0, (8.5)

in which the viscous terms disappear, and the dynamics becomes identical to that of
an ideal fluid (in this case, the flow contains only strain). We note that in the case
of a time-independent ideal flow, Eq. (8.3) takes a form reminiscent of Bernoulli’s
equation

1

2
|∇Φ|2 + w +Ψ = constant. (8.6)

The only difference is that in the case of Bernoulli’s equation the sum u2/2+w+Ψ,
is constant along flow lines, while in the case of Eq. (8.6) the sum is constant in the
whole flow domain.

To solve Eq. (8.3), we must impose boundary conditions on the potential Φ;
we require that the fluid cannot penetrate solid objects (impermeability boundary
conditions), which leads to Neumann boundary conditions at the body surface s

usolid
⊥ = us

⊥ = ∇⊥Φ
s, (8.7)
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Figure 15: Mechanism of vorticity generation in baroclinic conditions (from Fluid
Mechanics by P. Kundu).

where e⊥ is the local normal to the solid surface. We note that no boundary con-
ditions are imposed on the tangential component of the velocity; however, we know
that viscosity generates tangential stress at the solid surface, which forces the tan-
gential components of u and usolid at the solid surface to be equal:

usolid
∥ = us

∥. (8.8)

In general usolid
∥ ̸= ∇∥Φ, and the difference usolid

∥ −∇∥Φ acts as a source of vorticity.
Another mechanism for vorticity production is the presence of baroclinic con-

ditions, as illustrated in Fig. 15. The baroclinic case in the figure corresponds to
a situation in which the temperature is higher on the right (the fluid element may
represent the left lobe in the vertical section of a rising mushroom cloud). The
center of mass of the fluid element shifts to the left, which causes the gravitational
force to generate a counterclockwise torque on the fluid element.

8.2 Fluid inertia

We want to study the dynamics of a solid body in an infinite incompressible fluid.
Indicate with U the velocity of the body, assumed constant, and with u(x, t) the
velocity perturbation generated in the fluid. Consider, for simplicity, the case of a
sphere of radius R moving along the axis x1. Assume potential flow, and indicate
with û = ∇Φ̂ the fluid velocity perturbation in the reference frame of the moving
sphere,

û(x, t) = u(x+Ut, t). (8.9)

Take the origin of the axis of the moving reference frame at the center of the sphere.
The field û is obtained as the solution of the boundary value problem

∇2Φ̂ = 0, x · (U+ û)A = 0, (8.10)
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where A is the sphere’s surface.
The potential Φ̂ has the same structure of the potential of an electric multipole,

Φ(x) = −M (0)

x
− M(1) · x

x3
− M(2) : xx

x5
+ . . . (8.11)

We know from incompressibility that the point charge contribution to û, û(0) =
M (0)x/x3, vanishes. We verify that to enforce the boundary conditions in Eq. (8.10),
it is sufficient to keep the dipole contribution,

û = û(1) =
3(M(1) · x)x−M(1)x2

x5
. (8.12)

Indeed, we know from symmetry that M(1) is directed along x1. Equation (8.10)
thus becomes

x · (U+ û)A =
2x1

R2x
(M (1) + UR3) = 0, (8.13)

and substituting the resulting expression for M (1) into Eq. (8.12) yields

û =
[Ux2 − 3(U · x)x]R3

2x5
. (8.14)

We can calculate from Eq. (8.14) the kinetic energy content of the fluid velocity
perturbation generated by the sphere,

K =
πρR6U2

4

∫ +∞

R

dx

x4

∫ 1

−1

dz (3z2 + 1) =
πρR3U2

3
. (8.15)

Equation (8.15) tells us that the work required to accelerate the body has a com-
ponent associated with the induced fluid motion. The effect is the same as a renor-
malization of the body mass, called the added mass. In the case of a radius R
sphere,

δM =
2πρR3

3
. (8.16)

From Eq. (8.15), we can define the linear momentum of the flow perturbation

δP =
∂K

∂U
= δMU. (8.17)

Note that δP cannot be expressed as an integral over the linear momenta of the fluid
elements, as K receives contributions from momenta along δP and perpendicular
to it. Indeed, the integral ρ

∫
d3xû does not even converge. A simple mechanical

analog showing a similar mismatch between the total momentum and the sum of
the momenta of the parts is shown in Fig. 16. The Lagrangian of the system is
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Figure 16: Mechanical analog of the incompressible fluid. The two beads, which
represent the fluid, are free to slide vertically on the y axis and are connected to
the hinge in x (the solid body) by two rigid sticks of length L (the pressure and
impermeability constraints).

L(x, ẋ) = mẏ2 =
mx2ẋ2

L2 − x2
. (8.18)

The momentum conjugate to x is

p =
∂L

∂ẋ
=

2mx2ẋ

L2 − x2
, (8.19)

while the sum of the momenta of the two beads, mẏ and −mẏ, is by construction
equal to zero.

If the velocity U of the solid body is constant, the total linear momentum P =
(M + δM)U of the system and the fluid is conserved. We thus reach the remarkable
conclusion (d’Alambert’s paradox) that no force is required to keep a body in motion
in an inviscid infinite fluid. Note that the condition that the fluid is infinite cannot
be relaxed, as momentum could flow out of a finite domain without the need for
dissipation. A trivial mechanism is the interaction with a moving solid boundary.

To accelerate or slow down a body in an infinite inviscid fluid, we still need to
impose a force F = (M + δM)U̇. We can use this information to determine the law
of motion for a solid body immersed in an accelerating fluid. Suppose that the only
force on the body is Archimedes’ push from the acceleration of the fluid,

V ρDtUf ≡ V ρ(∂t +U · ∇)Uf , (8.20)

where V is the volume of the body, Uf the fluid velocity and DtUf the change of
fluid velocity experienced by the moving body. The Archimedes forces generate a
variation in the body momentum, MU, and in the momentum of the fluid δM(U−
Uf ). The result is

(M + δM)U̇ = (V ρ+ δM)DtUf . (8.21)
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8.3 Gravity waves

Gravity waves provide an example of potential flow. We focus on the case of small
amplitude gravity waves in deep water.

Let us choose our reference system with x1 along the propagation’s direction of
the wave, with x3 pointing upwards and the origin of the axes at the unperturbed
water surface, and we look for solutions in the form

Φ(x, t) = Φ0(x3) exp[i(kx1 − ωt)]. (8.22)

Incompressibility guarantees that the velocity potential obeys Laplace’s equation
∇2Φ = 0. In the case of the wave solution in Eq. (8.22),

(∂2
3 − k2)Φ0 = 0 ⇒ Φ−e

−kx3 + Φ+e
kx3 . (8.23)

The term Φ−e
−kx3 grows exponentially with the depth and is absent in the case of

infinitely deep water.
To obtain a dispersion relation, we require that the fluid pressure at the perturbed

water surface equals the atmospheric pressure. We can thus write

∂tPL(t|x, t0) = 0, (8.24)

where PL(t|x, t0) is the pressure at the current fluid element position, and x =
(x1, x2, 0) is the position of the fluid element at the time t0 when it crosses the
reference unperturbed water surface level (different fluid elements have different
time labels t0). We determine PL(t|x, 0) from P (x, t) by solving Eq. (8.5). The
equation can be linearized provided kΦ2 ≪ ωΦ, which, expressed in terms of the
wave height A = kΦ0(0)/ω, reads

kA ≪ 1. (8.25)

The linearized version of Eq. (8.5) reads

P/ρ = −∂tΦ + gx3 + constant. (8.26)

We likewise linearize PL,

PL(t|x, 0) ≡ P (xL(t|x, 0), t) = ρ[gx3,L(t|x, 0)− ∂tΦ(xL(t|x, 0), t)]
≃ ρ[gx3,L(t|x, 0)− ∂tΦ(x, t)]. (8.27)

We substitute Eq. (8.27) into Eq. (8.24), exploit the relation

ẋ3,L(t|x, 0) = u3,L(t|x, 0) ≃ u3(x, t), (8.28)

again drop terms quadratic in Φ, and we get

0 = [g∂3 − ∂2
t ]Φ = 0. (8.29)
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We finally substitute Eqs. (8.22) and (8.23) into Eq. (8.29) and we obtain the
dispersion relation

ω2 = kg. (8.30)

From Eq. (8.30), we find the phase velocity of the wave

cw = g/ω2. (8.31)

Gravity waves in nature do not always have a small amplitude. We are going to
see that nonlinearities generate a transport component in the motion of the fluid,
called the Stokes drift. Let us study the trajectory of a fluid element at the water
surface. Such fluid element will move with velocity ẋL(t|x) = uL(t|x). To the lowest
order in the parameter kA, we can approximate

xL ≃ x− A

(
cos(α0 + kx1 − ωt)
sin(α0 + kx1 − ωt)

)
, (8.32)

where A = k|Φ0(0)|/ω and α0 is the initial phase of Φ0. The fluid element moves
along a circular trajectory.

Let us evaluate the next order in the expansion

u(2)

L,1 = (xL(t|x)− x) · ∇u1(x, t)

=
A

ω
(xL(t|x)− x) · ∇[ekx3 sin(α0 + kx1 − ωt)].

We find from Eq. (8.32), the drift velocity at the water surface,

u(2)

L,1 =
kA2

ω
[sin2(α0 + kx1 − ωt) + cos2(α0 + kx1 − ωt)] = (kA)2cw. (8.33)

We see that the fluid motion at the water surface has an O((kA)2) drift component,
which can generate transport in the direction of the wave.

8.3.1 Viscous corrections

Working in a potential flow framework guarantees that continuity of the normal
stress at the water surface, Eq. (8.24), suffices as a boundary condition for the
problem. Finite viscosity requires us to impose continuity of the tangential stress
as well. We verify that the result is of a boundary layer of thickness so minuscule
that its effect on the wave dynamics is, in most circumstances, negligible.

Since µair ∼ 0.015µwater, we can the tangential stress at the water surface equal
to zero. Continuity of the tangential stress

∂3u1 = ∂3(u
vort
1 + ∂1Φ) = 0 ⇒ (8.34)
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then yields the boundary condition for the vorticity ω̂ at the water surface

ω̂ ≃ −∂3∂1Φ. (8.35)

We can obtain an equation for the vorticity by taking the curl of the Navier-Stokes
equation. In the case of linear waves, we can disregard the advection term, and we
obtain the diffusion equation

∂tω̂ = ν∇2ω̂. (8.36)

The viscous boundary layer at the water surface has therefore thickness

l ∼
√

ν/ω, (8.37)

which, for frequencies of the order of 1 Hz or smaller, is well below the millimeter
scale.

We can estimate the damping rate Γ of the wave as the ratio of the dissipation
per unit surface

Ė ∼ −µ

∫
dx3ω̂

2 ∼ µl|Φk2|2 (8.38)

and the energy per unit surface of the wave

E ∼ ρ

∫
dx3|∇Φ|2 ∼ ρ|Φ|2k, (8.39)

where we have exploited Eq. (8.23). We find

Γ

ω
=

Ė

ωE
∼ νlk3

ω
∼ ν3/2ω9/2

g3
, (8.40)

where use has been made of Eq. (8.31). In order for the ratio Γ/ω to become O(1),
it would be necessary to consider wavelengths at the millimeter scale, where surface
tension becomes significant and capillary waves take the place of gravity waves.

8.4 Suggested reading

• L.D. Landau and E.M. Lifshitz, “Fluid mechanics” Vol. 6, Secs. 9, 11 and 12.
(Pergamon Press 1987)

• P. Kundu, “Fluid Mechanics”, Secs. 5.1-3 (Ac. Press 2015)
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9 Vorticity dynamics

We can obtain an evolution equation for the vorticity ω = ∇×u by taking the curl
of the Navier-Stokes equation (5.2) and exploiting the identity from vector analysis
∇u2/2 = u× (∇× u) + u · ∇u. The result is

Dtω − ω · ∇u ≡ (∂t + Lu)ω = −∇× ∇P

ρ
+ ν∇2ω +∇× (f ext/ρ), (9.1)

where Luω is the Lie derivative defined in Eq. (2.17). We see that if the three
conditions that viscosity is negligible, the fluid is barotropic, and the external force
per unit mass is curl-free are all satisfied, vorticity will behave as a frozen vector
field.

This remarkable property has a geometrical origin, which is best understood by
looking at the behavior of the flow lines of the vorticity field (the vortex lines). We
note that since ω is by construction divergence-free, the vortex lines must either
close on themselves or terminate at the boundaries of the fluid.

We can define the vortex tube generated by a certain closed contour Γ as the set
of the vortex lines girded by Γ (see Fig. 17). The vorticity flux through any surface
A bounded by Γ has the same value

φΓ =

∫
A

dA · ω =

∫
Γ

dl · u, (9.2)

which defines the strength of the vortex tube.
We can verify that φΓ does not depend on the choice of the contour Γ. Consider

the portion V of the vortex tube in Fig. 17. From vorticity being a zero-divergence
field, we have indeed

0 =

∫
V

dV ∇ · ω =

∫
∂V

dA · ω =

∫
A′
dA′ · ω −

∫
A

dA · ω = φΓ′ − φΓ, (9.3)

where we have exploited the fact that ω is by construction parallel to the surface of
the vortex tube.

9.1 Kelvin’s theorem

If the flow is time-dependent, the geometry of vortex lines and vortex tubes will not
remain constant. However, if the flow is inviscid and barotropic, and the external
force is derived from a potential, f ext/ρ = −∇Ψ, the strength φΓ of vortex tubes
is conserved. The statement is equivalent to that of Kelvin’s theorem, that if the
above conditions are satisfied, the velocity circulation along a contour ΓL(t) moving
with the fluid is a constant of the motion,

φΓL
=

∫
ΓL

dl · u = constant. (9.4)
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Figure 17: Representation of a vortex tube.

Let us prove the result. The circulation of u along a path Γ, which coincides with
the strength of the vortex tube encircled by Γ, can be written in the form

φΓL
(t) =

∑
Γ

δlL(t) · uL(t), (9.5)

where the δlL are infinitesimal elements of ΓL. Differentiating in time Eq. (9.5)
gives us

φ̇ΓL
=

∑
Γ

uL · dδlL
dt

+
∑
Γ

δlLu̇L

=
∑
Γ

uL · δuL +

∫
Γ

u̇L · dl. (9.6)

We can exploit Eq. (7.21) to cast Euler’s equation (8.1) in the form

u̇L = Dtu = −∇(w −Ψ). (9.7)

The last term in Eq. (9.6) then becomes∫
Γ

u̇L · dl = −
∫
Γ

dl · ∇(w +Ψ) = 0, (9.8)

as for the other term in the last line of Eq. (9.6),∑
Γ

uL · δuL =
1

2

∑
Γ

δu2
L = 0, (9.9)

which is a consequence of the fact that Γ is a closed curve, and the variation of u2
L

around it is zero. We thus conclude

φΓL
= constant. (9.10)
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Figure 18: Representation of vortex sheets A, A1 and A2 and of the vortex line γ
intersection of the two vortex sheets A1 and A2.

A consequence of Kelvin’s theorem is that vortex sheets, and therefore also vortex
lines are frozen in the flow. We illustrate the situation in in Fig. 18a. Suppose A
is initially a vortex sheet, such as, e.g., the boundary of a vortex tube. Then, by
construction, the vorticity flux ΦΓ across any contour Γ on A is zero. As time passes,
the points on A (and on Γ) are transported by the flow. By Kelvin’s theorem,
however, the flux ΦΓL

remains equal to zero. Since Γ is arbitrary, AL remains a
vortex sheet.

We can verify that also vorticity lines are transported by the flow. Consider the
intersection γ of two vortex sheets S1 and S2 shown in Fig. 18. Vortex lines passing
through points on γ are by construction simultaneously vortex lines of S1 and S2.
However, the only line lying simultaneously in S1 and S2 is γ, which is therefore a
vortex line.

The fact that vortex lines are frozen in the flow has important consequences on
their topological properties. Since the strength of a vortex tube is constant along
the tube and is conserved by the flow (if the latter is inviscid and barotropic), such
a tube cannot be torn apart by the flow. Hence, it must preserve its topology: a
knotted tube cannot unknot, and vice versa if it is initially unknotted.

Another consequence of vortex lines transport by the flow is the phenomenon of
vortex stretching. Due to the chaotic nature of most 3D flows, the separation of fluid
elements will grow exponentially with time. Points along a vortex line will undergo
the same process, and the length of the vortex tube will grow exponentially with
time. Now, unless the fluid is simultaneously undergoing an exponential expansion,
the stretching process must be compensated by a simultaneous reduction in the
section of the tubes, and since by Kelvin’s theorem the strength of the tube remains
constant, the vorticity in the tube must grow exponentially.

We can define the Reynolds number of a vortex tube of strength φ from Eq. (9.2).
The equation gives us the velocity scale U ∼ φ/R, where R is the instantaneous
radius of the vortex tube. From here we we get the Reynolds number of the vortex

50



tube

Re ∼ UR

ν
∼ φ

ν
= constant. (9.11)

The fact that the Reynolds number remains finite would suggest that vortex stretch-
ing could continue forever without viscosity setting in and causing the breakup of
the vortex tube. The statement, however, is incorrect, because as the vortex tube
stretches, it densely fills the volume at its disposal, thus increasing the possibility of
parts of the tube approaching other parts of that or other vortex tubes. Typically,
during their interaction, the vortices roll on one another, which leads to the forma-
tion of vortex sheets where the Reynolds number becomes small. In the end, the
process leads to the breakup of the flow topology and eventually to the destruction
of the vortex structure.

Vortex stretching and the associated vorticity growth reflect the fact that the
vorticity field is a frozen vector field whose transport properties are described by
the Lie derivative defined in Eq. (9.1). Vortex stretching in the expression

Luω = u · ∇ω − ω · ∇u,

is accounted for by the term −ω · ∇u, while u · ∇ω takes care of advection. In a
reference frame moving locally with the fluid, we would have in fact

ω̇L = ω · ∇u.

The situation is particularly transparent when ω and u are parallel, in which case
the growth of ω is precisely the local expansion rate of the flow.

9.2 Helicity conservation

The fact that the knottedness of the vortex lines in an inviscid and barotropic flow
is conserved leads to the conservation of a quantity called helicity. Let us focus for
simplicity on the case of an infinite fluid in which the vortex lines close on themselves.
We can parameterize the knottedness of two vortex tubes γ1 and γ2 by the winding
number α1,2, as illustrated in Fig. 19. Note that α1,2 = α2,1. The helicity of the two
vortex tubes is defined as

I1,2 = I2,1 = α1,2φ1φ2. (9.12)

In particle physics, helicity is the spin projection onto the direction of the moment.
The physical interpretation of helicity in the present fluid dynamics context is simi-
lar. Let us focus on vortex tube γ1 and exploit Eq. (9.2) to express both φ1 and φ2

as integrals over γ1: over the section S1 in the case of φ1; over the contour γ1 in the
case of φ2:

φ1 =

∫
A1

dA · ω, φ2 =

∫
γ1

dl · u, (9.13)
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Figure 19: Degree of knottedness of vortex lines as a function of the winding
number α. Arrows along the tubes indicate the orientations of ω. Case a: α = 0;
case b: α = 1; case c: α = −2. Note that the winding number depends on the
relative orientation of the vortex lines.

where, by construction, ω is parallel to both dA and dl and ω ·dl > 0 and ω ·dA > 0.
We find

I1,2 = α1,2

∫
A1

dA · ω
∫
γ1

dl · u = α1,2

∫
V1

dA · dl u · ω = α1,2

∫
V1

dV u · ω. (9.14)

Since φ1, φ2 and α1,2 = α2,1 are simultaneously conserved in an inviscid fluid, the
helicity of the two vortex tubes remains constant.

In the presence of more than two vortex tubes, the helicity of vortex tube γ1 will
be

I1 =
∑
j ̸=1

I1,j, (9.15)

leading to the total helicity in the fluid

I =
∑
i ̸=j

Ii,j. (9.16)

We can now carry out a continuum limit. We get

I =

∫
dV u · ω. (9.17)

The velocity lines of a flow with non-zero helicity are locally helicoidal, which ex-
plains the name helicity for I.

Helicity in an inviscid fluid is a globally conserved quantity,

İ = 0, (9.18)

an ideal fluid is therefore characterized by the presence of two quadratic invariants,
total energy and total helicity. It turns out that helicity is also conserved in volumes
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VL transported by the flow, provided ω is locally tangent to the boundary of VL,
which means that vortex lines neither enter nor exit VL. We can easily verify that
vortex lines lying on the surface of a vortex tube, stay on that surface. Indeed, if
dA is an element of ∂VL with dA · ω|t=0 = 0, by Kelvin’s theorem, dA · ω|t>0 = 0
as well, and vortex lines in VL at t = 0 will remain in VL afterward. The argument
leading to helicity conservation for the vortex tubes in Eq. (9.14), thus applies to the
vorticity in a volume transported by the flow, and we obtain the local conservation
law

İVL
= 0, ω · dA = 0, dA ∈ ∂VL. (9.19)

Note that since we cannot send VL to zero, the helicity density u ·ω is not a frozen
field and therefore Dt(u · ω) ̸= 0.

9.3 Two-dimensional flows

The vorticity dynamics of 2D flows, such as those in the atmosphere at scales much
larger than the height of the troposphere, is qualitatively different from 3D. The
crucial aspect is that, contrary to the 3D case, vorticity in two dimensions is by
construction perpendicular to the velocity field. Thus, the vortex-stretching term ω ·
∇u is absent in the vorticity evolution equation (9.1), and the topological constraints
on the structure of vortex tubes disappear. The property is reflected in the fact that
the helicity of 2D flows is by construction equal to zero.

Equation (9.1) takes the form in two dimensions

Dtω = −∇× ∇P

ρ
+ ν∇2ω +∇× (f ext/ρ), (9.20)

where ω and the curls to RHS of the equation are perpendicular to the plane of the
flow. If the flow is inviscid and barotropic and the external force per unit mass is
curl-free, ω will behave like a frozen scalar,

Dtω = 0. (9.21)

Equation (9.21) implies that the flow has a new infinite set of global invariants,
namely, the integral of any function of the vorticity weighed on the fluid density is
a constant of the motion,

IF =

∫
d2x ρ(x, t)F (ω(x, t)) = constant. (9.22)
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We have indeed

İF =

∫
d2x

[
F∂tρ+ ρF ′∂tω

]
= −

∫
d2x

[
F∇ · (ρu) + ρF ′u · ∇ω

]
= −

∫
d2x

[
F∇ · (ρu) + ρu · ∇F

]
= −

∫
d2x∇ · (ρFu) = 0, (9.23)

and the property is shared by any frozen scalar, e.g., temperature, in the absence of
diffusion. The quantities IF are not conserved if the viscosity is non-zero.

The following quadratic invariant is called enstrophy, In particular we can eas-
ily derive an equation for the viscous dissipation of the quadratic invariant called
enstrophy

E =
1

2

∫
d2x ρω2. (9.24)

We have

Ė = −
∫

d2xµ|∇ω|2. (9.25)

We note that, contrary to helicity, enstrophy is the integral of a positive quantity,
which means that enstrophy conservation cannot be satisfied by balancing contri-
butions with different signs in the integral in Eq. (9.24). The property makes the
global constraint on enstrophy more severe than the one on helicity. We shall return
to the point when discussing 2D turbulence.

9.4 Invariance under relabeling

Conserved quantities in conservative systems are associated with the existence of
symmetries, which is the content of Noether’s theorem. Inviscid fluids make no
exception, and we are going to show that Kelvin’s theorem and the conservation
laws associated with it stem from the invariance of the dynamics under relabeling
of the fluid trajectories.

An inviscid fluid is essentially an ensemble of fluid elements moving under the ac-
tion of pressure and external forces. The role of the variables qi(t) in the Lagrangian
of a mechanical system is taken by the Lagrangian coordinates of the fluid elements
xL(t|x0, t0), in which the continuous label x0 takes the place of the discrete index i.
It is convenient to carry out the present analysis in a generic compressible case; we
thus choose to deform the coordinates x0 associated with the initial conditions for
xL, into new coordinates y such that

ρ(x0, t0)d
3x0 = d3y = dM (9.26)
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is the fluid element mass. We can then write the density at time t in terms of the
Jacobian J(y, t) of the transformation y → xL,

ρ(xL, t) =
∣∣∣∣∣∣∂xL

∂y

∣∣∣∣∣∣−1

:= J(y, t). (9.27)

The total energy of a fluid element is the sum of its kinetic energy and a potential
energy term that one can identify with the volume integral of the internal energy E .
For simplicity, assume zero external forces and barotropic conditions,

E = cV P (ρ). (9.28)

The action of the fluid takes then the form

A =

∫
dt L[uL, P ; t] =

∫
dt

∫
d3y

[1
2
u2
L(y, t)− cV P (J(y, t))

]
. (9.29)

A simple example of relabeling is the shift y → y′ = y+ δy(y). We require that
the shift y → y′ still satisfies Eq. (9.26), d3y = d3y′ = dM , in such a way that

∇y · δy = 0 ⇒ δJ = 0. (9.30)

Equation (9.30) and the condition that the flow is barotropic imply that the
pointwise variation of P in the shift y → y′ is zero. As regards the Lagrangian
velocity uL, we have the change of variable

uL(y, t) = u′
L(y

′, t) = uL(y
′, r) + δu(y′, t). (9.31)

Invariance under relabeling of the action then takes the form

δA =
1

2

∫
dt

∫
d3y δu2

L(t|y, t0) =
∫

dt

∫
d3y uL · δuL = 0. (9.32)

Indicate with yL(x, t) ≡ yL(t0|x, t) the inverse of the mapping y → xL and define
the velocity in y-space

v(y, t) = lim
δt→0

yL(xL(y, t), t)− yL(xL(y, t), t− δt)

δt
. (9.33)

We can then evaluate the variation δuL(y, t0) at the current position xL, following
the construction in Fig. 20,

uL(t|ya, t0) = lim
δt→0

xL(t|ya, t0)− xL(t− δt|ya, t0)

δt

= lim
δt→0

xL(t|ya, t0)− xL(t|yb, t0)

δt

= lim
δt→0

xL(t|yL(xc, t− δt), t0)− xL(t|yL(xc, t), t0)

δt
= −v(y, t) · ∇yxL(t|y, t0). (9.34)
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Figure 20: Lagrangian trajectories and their relative labels ya and yb.

The variation of uL(t|y, t0) then reads

δuL = −δvL · [∇yxL + δy · ∇y∇yxL]

= −δvL · ∇yxL + δy · ∇yuL, (9.35)

where to go to the second line of the equation, we have exploited Eqs. (9.34) and
(9.30). We can substitute Eq. (9.35) into Eq. (9.32), and get

δA =

∫
dt

∫
d3y

{
− uL · [δv · ∇yxL] +

1

2
δy · ∇yu

2
L

}
= −

∫
dt

∫
d3yA · δv, (9.36)

where we have defined

A = uLi
∇yxLi, (9.37)

and to proceed to the second line of the Eq. (9.36), we have integrated by parts with
respect to y the term δy · ∇yu

2
L, and then exploited Eq. (9.30). We next integrate

by part with respect to t and we get

δA =

∫ tf

ti

dt

∫
d3y δy · ∂tA. (9.38)

The volume preservation condition in Eq. (9.30) implies that δy is the curl of some
vector field T:

δy(y, t) = ∇y ×T(y, t). (9.39)

Substituting Eq. (9.39) into Eq. (9.38) and integrating by parts with respect to y
yields then the final expression

δA =

∫ tf

ti

dt

∫
d3yT · ∂t[∇y ×A]. (9.40)
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The remaining steps are straightforward. Invariance under relabeling means that
the variation of A with respect to δy is zero. Since T is arbitrary, ∂t[∇y ×A] = 0,
which implies that the circulation of A around an arbitrary path Γy in y-space is
constant: ∫

Γy

dy ·A = constant. (9.41)

However, from Eq. (9.37), A · dy = uL · dx. From Eq. (9.40) we thus recover the
statement in Kelvin’s theorem∫

ΓL

dl · u = constant. (9.42)

9.5 Suggested reading

• J. Pedlosky, “Geophysical fluid mechanics”, Chap. 7, (Springer 1987)

• R. Salmon, “Hamiltonian fluid mechanics”, Annu. Rev. Fluid Mech. pp. 225
vol 20 (1988)
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10 Compressible flows

We know how to compress a fluid by external means (say a piston in a cylinder).
We know (and shall discuss extensively in the next section) that sound waves are
essentially small-amplitude compression waves. We want to understand under what
conditions a flow could generate the large pressure fluctuations associated with a
large compression events in the fluid.

We can obtain an estimate of the ratio P̃ /P̄ directly from the Navier-Stokes
equation (5.2). Since our focus is on flow-induced compression, we neglect the term
f ext in the equation. We obtain the estimate in terms of the characteristic length
and velocity scale of the flow, L and U ,

P̃ ∼ ρmax(U2, νU/L). (10.1)

In the case of an ideal gas, the law of state Eq. (4.8) would give us

P̃

P̄
∼ max(U2, νU/L)

v2th
= Ma2max(1,Re−1), (10.2)

where

Ma =
U

cs
∼ U

vth
, (10.3)

is called the Mach number, and cs is the sound speed. By combining Eq. (10.3) with
Eqs. (4.3) and (4.11), we obtain the following interesting expression connecting the
Mach number with the Reynolds number and the Knudsen number,

ReKn ∼ Ma. (10.4)

Substituting Eq. (10.4) into Eq. (10.2) we find

P̃

P̄
∼ Kn2Remax(Re, 1)

Since by definition, in the case of a fluid, Kn ≪ 1, large pressure fluctuation will
only be possible for high Reynolds numbers.

We note that large density and pressure fluctuations imply large temperature
fluctuations. Indeed, we can estimate from the heat transport equation (7.18),

DtT ∼ 1

cV
T∇ · ρ ⇒ ρ̃

ρ̄
∼ T̃

T̄
. (10.5)

Hypersonic flows can thus generate temperature perturbations much larger than the
ambient temperature, which is of course relevant hypersonic aircraft design.
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10.1 Sound waves

We can use conservation laws Eqs. (3.2), (5.2) and (7.18), together with the law of
state Eq. (4.8), to obtain the dispersion relation for sound waves in a gas.

Decompose the density, pressure, and temperature into their equilibrium and
fluctuation components,

ρ = ρ̄+ ρ̃, T = T̄ + T̃ , P = P̄ + P̃ . (10.6)

We look for longitudinal waves. The problem is therefore unidimensional and we can
drop indices on vectorial quantities. We make the ansatz (to be verified afterward)
that viscous forces and heat transport are negligible, and assume small amplitude
waves. Equations (3.2) and (5.2) then read

∂tñ+ n̄∂xu = 0, (10.7)

ρ̄∂tũ+ ∂xP̃ = 0. (10.8)

We next use the law of state P = (kB/m)ρT to write Eq. (7.34) in terms of pressure
and density

dP =
cPP

cV ρ
dρ ⇒ P̃ =

cPkBT̄

cVm
ρ̃, (10.9)

where cP = 1 + cV is the specific heat per molecule at constant pressure.
Solution of Eqs (10.7-10.9) yields d’Alambert’s equation

(∂2
t − c2s∂

2
x)P̃ = 0, (10.10)

where

cS =

√
dP

dρ
=

√
cPkBT̄

cVm
∼ vth (10.11)

(remember that P = P (ρ) for isoentropic flows) is the sound propagation speed.

10.1.1 Nonlinear and non-ideal effects

The solution of Eq. (10.10) are sinusoidal waves ∝ exp(k(x− cst)). We evaluate the
magnitude of the nonlinearity correction in the Navier-Stokes equation as

u∂xu

∂tu
∼ ku2

ωu
=

u

cs
∼ u

vth
. (10.12)

Nonlinear advection is important for u ∼ vth, in which case, from (10.7) and (10.8),
P̃ ∼ P̄ and ρ̃ ∼ ρ̄. Cavitation phenomena, in which ρ = 0 in the troughs of the
wave, thus become possible for large-amplitute waves.

59



Let us determine next the magnitude of the viscous correction. We find from
Eq. (5.2)

ν∂2
xu

∂tu
∼ νk2

ω
=

νω

c2s
. (10.13)

For ν ≃ 0.15 cm2/s and cs ≃ 340m/s, we find that in order for viscous effects to
be important, we would need ω ∼ 108Hz, which is an astonishingly high frequency.
Exceedingly high frequency would be required as well for diffusion to be so large to
invalidate the adiabatic approximation in Eq. (10.9).

10.1.2 Dynamics of the loudspeaker

Let us determine the conditions for sound generation from a solid body oscillating
with frequency ω. The balance in Eq. (10.1) is replaced by

P̃ ∼ Lωρ̄u ⇒ ρ̃

ρ̄
∼ u

c2S
ωL, (10.14)

where L is the characteristic size of the body and where we have exploited Eq.
(10.5). We see that for the compression contribution in the continuity equation
(3.2) to be significant, we need

ρ̃

ρ̄
∼ u

Lω
⇒ ωL

cs
∼ 1, (10.15)

which means that sound waves with frequency ω must have a wavelength comparable
with L. The compression, and therefore also the sound intensity, is smaller at
frequencies ω < cs/L (that is why low frequencies require loudspeakers with large
woofers).

10.2 The Burgers equation

The hypersonic limit Ma ≫ 1 corresponds to a regime in which the pressure P ∼ ρv2th
is much smaller than the kinetic energy density (ρ/2)u2. The zero-pressure version
of the Navier-Stokes is called the Burgers equation, which, for negligible viscosity
and in the absence of external forces takes a particularly simple form:

Dtu = 0. (10.16)

In a Burgers dynamics, fluid elements move at constant velocity along straight tra-
jectories:

uL(t|x0, t0) = u(x0, t0) ⇒ xL(t|x0, t0) = x0 + u(x0, t0)(t− t0). (10.17)

The observation allows one to map the solution of the inviscid Burgers equation,
which is a partial differential equation, to the solution of the ordinary differential
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equation ẋL = uL. The approach, called the method of characteristics, is common
to other first-order partial differential equations, such as e.g. the Hamilton-Jacobi
equation. The trajectories xL in the case of the Burgers equation, and (p, q) in the
case of the Hamilton-Jacobi equation, are called the characteristic curves.

The graph in (x, t) of the characteristic curves of the Burgers equation is com-
posed of straight lines, whose orientation is determined by the initial value of u.
Depending on the choice of the initial condition u(x0, 0) = uL(t|x0, 0), the charac-
teristic curves may intersect, and in this case the solution of the Burgers equation
becomes multivalued. In one dimension, multivalued solutions occur for u∂xu < 1.
The situation is illustrated in Fig. 21. Fluid parcels starting from the left with a
high velocity eventually catch back slower fluid parcels starting from the right, and
at t > 1 + |x0| the fluid velocity becomes multivalued.

The finite-time break-up of the solutions of the inviscid Burgers equations is
a consequence of the fact that there are no pressure forces preventing fluid parcels
from compenetrating each other. A fluid description of the medium then ceases to be
valid. Indeed, the intersecting characteristic curves describe a superposition of fluid
jets, interpreted in a kinetic theory picture as a non-equilibrium velocity distribution
(note that each jet is monochromatic, as the thermal velocity vth ∼

√
P/ρ → 0 in

the regime considered). Such a superposition of jets can only survive in a transition
region whose width is of the order of the mean free-path λ, where the inviscid
hypothesis for the Burgers equation ceases tobe valid.

10.2.1 Viscous Burgers equation

A possibility to account for the presence of transition regions in a Burgers dynamics,
is to add a viscous term to Eq. (10.16),

Dtu = ν∂2
xu. (10.18)

It is important to note that the viscosity coefficient in Eq. (10.18) has nothing
to do with the viscosity in the Navier-Stokes equation, as the condition that the

u(x ,t )
00

x
0

t=1

xL

−1

−1

1

1 −1 1

t

Figure 21: Characteristic lines (right) of the Burgers equation originating from a
piecewise linear initial condition for u (left). The solution of the inviscid Burgers
equation becomes multivalued in the space-time region above the dashed lines.
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velocity differences at scale λ are ≪ vth is violated. However, we can verify that no
multivalued solution are present in this case. Let us solve Eq. (10.18) with boundary
conditions

u(±∞, t) = ∓1, (10.19)

and initial condition as in Fig. 21. Take t ≫ 1 and look for stationary solutions to
the problem.

Equation (10.18) reads at stationarity,

(1/2)∂xu
2
ν = ν∂2

xuν ⇒ ν∂xuν − u2
ν/2 = ±a2, (10.20)

where a is a constant. We solve Eq. (10.20) in the case the a2 to the RHS of
the equation has a minus sign, and verify that the choice allows us to enforce the
boundary conditions in Eq. (10.19) and Fig. 21. Define uν = aû and indicate
derivatives with respect to x with a prime. We get

û′

û2 − 1
≡ (arctan û)′ = − a

2ν
⇒ û = tanh

(
b− ax

2ν

)
, (10.21)

where b is another constant. The boundary condition (10.19) imposes a = 1. The
initial condition in Fig. 21 requires the solution to be antisymmetric, hence b = 0.
We thus obtain the result

uν(x) = − tanh
( x

2ν

)
. (10.22)

The limit ν → 0 in Eq. (10.22) corresponds to a step-function solution

u(x) = −1 + 2θ(x), (10.23)

which does not coincide with the solution of Eq. (10.16) with the same boundary
conditions. The limit ν → 0 of Eq. (10.18) is thus singular and and the procedure
leading to Eq. (10.23) is an example of singular perturbation.

Of course, we can adapt the description to the case in which u(−∞) ̸= −u(+∞)
by a mere change of reference frame. In general we get

u(x) = u(−∞) + 2Uθ(x− x0 − Ut), U =
u(+∞)− u(−∞)

2
, (10.24)

where x0 is the initial position of the discontinuity.
Equation (10.24) describes a situation in which the mass of the fluid is trans-

ported to the transition region, and leads to the formation of a singularity in the
mass distribution. An initially uniform mass distribution thus evolves into an en-
semble of spikes, interspersed by voids, whose position and translation velocity is
determined by the initial fluid velocity profile. It is easy to be convinced that in two
and three dimensions, the spikes are replaced by singular mass distributions setting
the boundary of two and three-dimensional voids.
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10.2.2 The method of characteristics

A first order PDE for a field u = u(z) can be written in the most general form as

F (z, u,π) = 0, πi = ∂ziu. (10.25)

In the case of the 1D Burgers equation,

F = π1 + uπ2 = 0, z1 = t, z2 = x. (10.26)

In the case of the Hamilton-Jacobi equation Ṡ + H(∂qS, q, t), u ≡ S is the action
and Eq. (10.25) takes the form

F = π1 +H(π2, z2, z1) = 0, z1 = t, z2 = q. (10.27)

The method could be generalized to the case F is a vector, and u is a vector field.
The solution of Eq. (10.25) by the methods of characteristic is obtained by

writing u = u(zi) in the parametric form u = u(zi(s|z0)), where the zi = zi(s|z0)
are the characteristic curves of the equation. Suppose we have such a solution. By
differentiating Eq. (10.17) along a characteristic curve, we would then obtain

0 = Ḟ = żi∂ziF + żi(∂ziu)∂uF + π̇i∂πi
F

= żi(∂ziF + πi∂uF ) + π̇i∂πi
F, (10.28)

where dot indicates total derivative with respect to s. We solve Eq. (10.28) through
the ansatz

żi = λ∂πi
F, (10.29)

where λ is an arbitrary parameter (in general a function of z and s). By substituting
Eq. (10.29) into Eq. (10.28) we get

π̇i = −λ(∂ziF + πi∂uF ), (10.30)

and by substituting Eq. (10.29) into the relation u̇ = żi∂ziu = żiπi,

u̇ = λπi∂πi
F. (10.31)

The characteristic curves are obtained by solving the system formed by Eqs. (10.29)
and (10.31):

żi = λ∂πi
F, u̇ = λπi∂πi

F, (10.32)

in which different choices of λ lead to different parameterizations of the curves.
We can apply the method to the solution of the Hamilton-Jacobi equation. We

verify that the choice λ = 1, z1 = t = s gives us back Hamilton’s equations. From
the first component of Eq. (10.29) we get the identity ż1 = ∂π1F = 1, and the
second component gives us

ż2 ≡ q̇ = ∂π2F = ∂pH (10.33)

that is Hamilton’s equation for q. Since F does not depend explicitly in S, Eq.
(10.30) becomes π̇i = ∂z1F . The first component of the equation yields the identity
S̈ = −Ḣ, and the second component gives us Hamilton’s equation for p,

π̇2 ≡ ṗ = −∂z2F = −∂qH. (10.34)
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10.3 Shock waves

Neither the inviscid Burgers equation nor the ν → 0 limit of its viscous counterpart
provide a satisfactory model of shock wave formation. The main issue in the viscous
case is the unbounded growth of the mass in the shock at stationarity described by
Eq. (10.23). We describe a shock as a discontinuity in the thermodynamic quanti-
ties that describe the fluid—mass, momentum, and energy—with no accumulation,
which means that the flow of those quantities presents no discontinuity.

We consider the case of a normal shock, namely, an infinite planar discontinuity,
which we take to be the x2x3 plane, traveling to the left (towards smaller x1). We
thus drop vector indices and use subscripts 1 and 2 to identify thermodynamic
quantities to the left and right of the discontinuity. We expect the shock to travel
at supersonic speed, which means that no perturbation can propagate to the left
of the discontinuity in the quiescent fluid. Thus, ρ1 and P1 can be identified with
the ambient density and pressure of the fluid, and −u1 is the speed of the shock
wave; conversely, u2 − u1 is the fluid velocity to the right of the discontinuity in the
laboratory frame.

Far from the shock, the flow is uniform, and neither viscous stresses nor diffusive
heat transport contribute to the dynamics. The continuity conditions for the mass,
momentum, and energy flows read

ρ1u1 = ρ2u2 := J, (10.35)

ρ1u
2
1 + P1 = ρ2u

2
2 + P2, (10.36)

u2
1/2 + w1 = u2

2/2 + w2. (10.37)

Together with an equation of state, Eqs. (10.35-10.37) allow us to determine the
three thermodynamic quantities ρ, u and w on one side of the shock from their
values on the other side. However, we can obtain some information on the structure
of the shock without having to solve the equations.

First, define the volume per unit mass vi = ρ−1
i and exploit Eq. (10.35) to rewrite

Eq. (10.36) as

J2v1 + P1 = J2v2 + P2 ⇒ J2 =
P2 − P1

v1 − v2
. (10.38)

The condition J2 > 0 tells us that either P2 > P1 and ρ2 > ρ1 or P2 < P1 and
ρ2 < ρ1, but we shall verify that requiring that entropy increases in the process,
selects the first option.

Next rewrite Eq. (10.37) as

J2v21/2 + w1 = J2v22 + w2, (10.39)

and substitute in the equation the expression for J2 from Eq. (10.38). The result is

w1 − w2 +
1

2
(v1 + v2)(P2 − P1) = 0. (10.40)
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Figure 22: Rankine-Hugoniot adiabatic.

Equation (10.40), called the Rankine-Hugoniot relation, allows us, given an equation
of state, to determine the values of V and ρ on one side of the shock from those on
the other. Values of the density and the pressure upstream of the shock determine
a Rankine-Hugoniot adiabatic passing through the point V1, P1. All points on the
curve to the left of this “initial” point represent admissible values of the density and
the pressure V2, P2 downstream of the shock (see Fig. 22).

We can obtain additional information on the shock structure in the weak-shock
regime. The regime corresponds to point 2 approaching the initial point 1 on
the Rankine-Hugoniot adiabatic. Equation (10.36) becomes in the limit, from Eq.
(10.11),

J2 = ρ2u2 ≃ −dP

dv
≃ ρ2

dP

dρ
= ρ2c2s, (10.41)

where the change of entropy in going from 1 to 2 is neglected to lowest order in
ρ2 − ρ1. We see that to lowest order in ρ2 − ρ1, u1 = u2 = cs, and the shock
wave propagates at the speed of sound. Inspection of Fig. (22) shows actually that
u1 > cs and u2 < cs: the shock is supersonic, and in the shock reference frame, the
fluid goes past the discontinuity at subsonic speed u2 < cs. Indeed, from the fact
that the chord 12 in Fig. 22 is steeper than the tangent in 1, we have

u2
1 = v21J

2 > −v21
dP

dv

∣∣∣
1
= c2s1 , (10.42)

and in a similar way, from the fact that the chord 12 is less steep than the tangent
in 2,

u2
2 = v22J

2 < −v22
dP

dv

∣∣∣
2
= c2s2 . (10.43)

10.3.1 Entropy production and shock structure

We continue to focus our analysis on weak shocks for which the increments δP =
P2 − P1, and therefore also δv, δw, and δs can be considered small. It turns out
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that we must expand Eq. (10.40) to third order in δP (and first order in δs) to get
sensible results. We rewrite Eq. (10.40) as

δw = (v + δv/2)δP, (10.44)

and expand separately the two sides of the equation,

δw =
∂w

∂s
δs+

∂w

∂P
δP +

1

2

∂2w

∂P 2
(δP )2 +

1

6

∂3w

∂P 3
(δP )3

= Tδs+ vδP +
1

2

∂v

∂P
(δP )2 +

1

6

∂2v

∂P 2
(δP )3, (10.45)

(v + δv/2)δP =
(
v +

1

2

∂v

∂P
δP +

1

4

∂2v

∂P 2
(δP )2

)
δP. (10.46)

We obtain the result

δs =
1

12T

∂2v

∂P 2
(δP )3. (10.47)

The second derivative ∂2
Pv is in most cases positive [that is the case for ideal gases,

for which v(P, s) = c(s)P−cV /cP ], and we confirm the hypothesis that the entropy of
a fluid mass crossing the shock increases with the pressure.

Entropy production is associated with viscous dissipation within the shock. We
can use Eq. (10.47) to estimate of the shock thickness δx. We keep considering the
case of a weak shock. The total dissipation per unit mass of a fluid element crossing
the shock is obtained by multiplying the viscous heat production µ||ṡ||2 = µ(∂xu)

2

in Eq. (7.9) by the time δt ≃ δx/cs and dividing by ρ. By equating the result with
Tδs and exploiting Eq. (10.47), we find

∂2v

∂P 2
(δP )3 ∼ νδx

cs

(δu
δx

)2

. (10.48)

From Eqs. (10.42) and (10.43) we estimate δu ∼ Jδv ∼ csδv/v ∼ cs(δP∂Pv)/v.
Substituting into Eq. (10.48), we obtain

δx ∼ ν(∂Pv)
2cs

v2δP∂2
Pv

. (10.49)

The thickness of the shock diverges for δP → 0 (the shock ceases to be a shock).
Pushing the estimate to δP ∼ P would give, instead,

δx ∼ νcs
vP

∼ ν

vth
∼ λ, (10.50)

where λ is the mean free path and we have exploited Eq. (4.11). We surmise that
away from the weak-shock limit, the internal dynamics of the shock lies outside of
the domain of fluid mechanics, and would be better described in a kinetic theory
approach.
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10.4 Suggested reading

• L.D. Landau and E.M. Lifshitz, “Fluid mechanics” Vol. 6, Secs. 10 and 82-84
(Pergamon Press 1987)
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11 Thermal convection

Heating or cooling can lead a mass of fluid to change its volume without pressure
forces contrinuting to the process. Buoyancy forces then enter into play, pushing the
fluid element up or down depending on the density difference with the surrounding
fluid. Depending on the vertical density profile of the fluid, the force on the fluid
element may either go back to zero, and the motion will stop, or remain finite, and
the fluid element will keep moving upward or downward—a process called convec-
tion. Convection can actually start without an external action if the vertical density
profile is unstable, namely, with cold dense fluid lying on top of warm less dense
fluid.

11.1 Stability under convection

We can apply the hydrostatic balance condition Eq. (6.1) to determine the stability
properties of a stratified column of fluid. The equation takes the form

∂3P = −gρ, (11.1)

Mechanical equilibrium requires P to be horizontally uniform, which implies, through
Eq. (11.1) and the law of state P = P (ρ, T ), that also ρ and T are horizontally
uniform. The fluid is therefore barotropic. The vertical profiles of P , ρ and T ,
however, remain undetermined.

Instability occurs if the vertical displacement of a volume of air results in a
density gap with the surroundings and a buoyancy lift in the direction of the dis-
placement; conversely, the column is stable the displacement generates a buoyancy
force in a direction opposite to the displacement. Instability is expected in the pres-
ence of large negative vertical temperature gradients in the column: a rising volume
of hot air near the ground will find itself in regions where the air is colder and denser
and will continue to rise, subjected to a positive Archimedes’ forces; a volume of
cold air moving downwards will find itself in hotter, lower density regions of the
column and will continue to sink, subjected to a negative Archimedes’ force.

Let us determine the temperature profile corresponding to marginal stability.
Consider the displacement of an air parcel from height x3 to height x3 + dx3. Me-
chanical equilibrium requires that the values of the pressure in and out the parcel
remain equal; the final pressure in the parcel will then be PL = P (x3 + dx3), corre-
sponding to a variation of pressure in the displacement, from Eq. (11.1),

dPL = −gρdx3. (11.2)

The displacement is supposed to take place on the time scale of the buoyancy forces,
much shorter than the diffusive time scale, which means that the density and the
temperature in the parcel evolve along an adiabatic. From Eq. (7.34) and the law
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of state P = (kB/m)ρT , we get

dPL =
kBρ

m

(
dTL +

TL

ρ
dρL

)
=

kBcP
m

dTL, (11.3)

where cP = 1 + cV is the specific heat per molecule at constant pressure. By
combining Eqs. (11.3) and (11.2), we find the linear law

dTL = − mg

kBcP
dx3. (11.4)

Equation (7.34) tells us that along an adiabatic the density is inversely proportional
to the temperature. Thus, a situation in which TL grows with x3 more rapidly than
T (x3) corresponds to unstable conditions.

We are thus able to conclude that marginal (neutral) stability is realized by an
adiabatic temperature profile

dT

dx3

=
dTadia

dx3

= − mg

kBcP
. (11.5)

(Note that if the profile is adiabatic, s = constant and any flow in the column
is automatically isoentropic.) Unstable stratification corresponds to dT/dx3 <
dTadia/dx3; stable stratification corresponds to dT/dx3 > dTadia/dx3. In the atmo-
sphere, isothermal conditions, dT/dx3 = 0 and so-called inversion regimes dT/dx3 >
0 are typically considered strongly stable conditions.

11.2 The Boussinesq approximation

We want to study convection in a range of scale L such that the variations of
equilibrium quantities with height can be considered small,

L∂3ρ̄

ρ̄
,
L∂3T̄

T̄
= O(ϵ), ϵ ≪ 1. (11.6)

We use the ansatz

T̃

T̄
∼ ρ̃

ρ̄
∼ ϵ, (11.7)

and also assume that the plumes have characteristic size l ≪ L, with

l

L
∼ ϵ, (11.8)

in such a way that

|∇ρ̃|
|∂3ρ̄|

∼ |∇T̃ |
|∂3T̄ |

∼ 1. (11.9)
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We can estimate the magnitude of the velocity and pressure perturbation directly
from the Navier-Stokes equation (5.2). At O(ϵ0), of course, we get the hydrostatic
balance condition ∂3P̄ = −gρ̄. To find something more interesting, we must go to
O(ϵ),

ρ̄Dtu+∇P̃ = µ[∇2u+ (1/3)∇(∇ · u)]− gρ̃e3. (11.10)

In order for convective motions to be established, the buoyancy force ρ̃g must be
sufficiently strong to overcome the viscous force µ∇2u. This leads to the dominant
balance in Eq. (11.10)

ρ̄u · ∇u ∼ ∇P̃ ∼ −gρ̃e3 ⇒ U2 ∼ lgϵ,
P̃

P̄
∼ Ma2 ∼ lgϵ

v2th
, (11.11)

and the condition of neglible viscous forces is just that the Reynolds number Re =
Ul/ν ∼ l3/2(gϵ)1/2/ν is large.

We assume that the Mach number is negligible, which allows us to set, from Eq.
(11.11),

P̃ /P̄ = 0. (11.12)

We thus get, from the law of state Eq. (4.8),

ρ̃

ρ̄
= − T̃

T̄
. (11.13)

Substituting Eq. (11.13) into the continuity equation (3.2), allows us to estimate
compression,

∇ · u = −
(Dtρ̃

ρ̄
+

u3∂3ρ̄

ρ̄

)
=

DtT̃

T̄
− u3∂3ρ̄

ρ̄
, (11.14)

where use has been made of Eq. (11.9), and we have kept terms up to O(ϵ). We
can compare compression with the other components of the velocity gradient

∇ · u
||∇u||

∼ u3∂3ρ̄

ρ̄||∇u||
∼ l

L
∼ ϵ. (11.15)

To lowest order in ϵ, the continuity equation then coincides with the incompressibil-
ity constraint

∇ · u = 0. (11.16)

By substituting Eq. (11.13) into Eq. (11.10), and taking into account Eq. (11.16),
we get the following approximate form of the Navier-Stokes equation

ρ̄Dtu+∇P̃ = µ∇2u+
gρ̄

T̄
T̃e3. (11.17)
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Next, we apply the ansatz in Eqs. (11.6-11.8) to the equation for heat transport
(7.18). We can verify that the two terms DtT and T∇ · u in Eq. (7.18) are both
O(ϵ). At O(ϵ), the transport term reads DtT = DtT̃ + u3∂3T̄ . We then substitute
Eq. (11.14) into Eq. (7.18) and we get

cPDtT̃ = κ∇2T̃ + ĥ+ u3

( T̄
ρ̄
∂3ρ̄− cV ∂3T̄

)
, (11.18)

where cP = 1+cV and ĥ contains the contribution from external and viscous heating
sources.

Equations (11.16-11.18) constitute the Boussinesq approximation for a stratified
fluid, where the terms in brackets act as a source of temperature fluctuations.

We can linearize Eqs. (11.17) and (11.18) and carry out a normal mode analysis
of the solutions. By carrying out the operation we would discover that the sign of
the term in brackets in the RHS of Eq. (11.18) determines whether the solution
are oscillatory or exponentially growing. Namely, positive and negative (T̄ /ρ̄)∂3ρ̄−
cV ∂3T̄ correspond to unstable and stable stratification, respectively.

Equations (11.17) and (11.18) take a somewhat simpler form by expressing ρ and
T in terms of the so-called potential temperature,

Θ ∝ T cV /cP ρ−1/cP ∝ TP−1/cP . (11.19)

We verify that dΘ = 0 along an adiabatic. At a fixed pressure, the potential tem-
perature is proportional to the temperature and thus allows us to identify adiabatics
by their temperature at a reference pressure.

From Eq. (11.19) we find

∂3Θ̄ = − 1

cP T̄

( T̄ ∂3ρ̄
ρ̄

− cV ∂3T̄
)
, (11.20)

where the term in brackets in the RHS of the equation equals the term in brackets
in the RHS of Eq. (11.18). We also find

Θ̃ =
Θ̄

T̄
T̃ − Θ̄

cP P̄
P̃ ≃ Θ̄

T̄
T̃ ⇒ DtΘ̃ ≃ Θ̄

T̄
DtT̃ , (11.21)

where use has been made of Eqs. (11.8) and (11.12). We substitute Eqs. (11.20)
and (11.21) into Eqs. (11.17) and (11.18), and obtain the following alternative form
for the momentum and heat balance equations in the Boussinesq approximation,

Dtu+
1

ρ̄
∇P̃ = ν∇2u+

gρ̄

Θ̄
Θ̃e3, (11.22)

cPDtΘ̃ = κ∇2Θ̃ + ĥ− cPu3∂3Θ̄. (11.23)
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12 Turbulence

High Reynolds number flows are usually turbulent. The interaction of the fluid with
a solid obstacle leads, because of the no-slip boundary condition, to the formation
of vortex sheets which are structurally unstable, roll into vortex tubes that are con-
tinuously stretched and deformed and lead to the formation of small-scale turbulent
structures. A flow that is initially at spatial scale L thus breaks into a multitude of
eddies at scales l ≪ L. The energy of the mean flow is continuously transferred to
the turbulent fluctuations, and the energy of the smallest eddies is converted to heat
through viscous dissipation. This suggests us that a satisfactory description of the
turbulent dynamics could be achieved by writing evolution equations for the mean
velocity of the flow, ū(x, t), and the turbulent kinetic energy and viscous dissipation.

Since most of the difficulties of turbulence are already present in incompress-
ible flows, we assume incompressibility from the start. The turbulent energy and
dissipation per unit mass read

k(x, t) =
1

2
ũ2(x, t), ϵ(x, t) =

ν

2
||˜̇s(x, t)||2, (12.1)

where we use tilde to identify fluctuations.
The turbulent vortices are transported by the mean flow and by turbulence. An

equation for the mean flow can be obtained directly as the average of the Navier-
Stokes equation (5.2):

ρD̄tū+∇P̄ = f ext +∇ · (µ∇ū− ρũũ), (12.2)

where D̄t = ∂t + ū · ∇. Note the quadratic term to RHS, which contains the effect
of random advection by the turbulent eddies: ∇ · ũũ = Dtu − D̄tū. To solve Eq.
(12.2) we need an expression for the quadratic average ũũ. We immediately realize
that since there are six independent components in ũũ, solving an equation for k is
not enough. More seriously, in the same way the equation for ū contains through
advection a quadratic contribution ũũ, an equation for ũũ will involve a cubic
component ũũũ. A similar situation would occur if we tried to write an equation
for the cubic term, and so on. The result is an infinite system of coupled equations
which can realistically be solved only by assuming in some equations a specific form
of the highest order correlations.

A possible strategy is to exploit the analogy between the Reynolds stress and
the viscous stress, and introduce an eddy viscosity µT , in which the characteristic
size L of the eddies and their characteristic velocity ũL take the place of the mean
free path λ and the thermal velocity vth in µ (see Eq. (4.10). The result is

Rij = νT ṡij, νT = ũLL. (12.3)

where

ũL ∼
√
k, (12.4)

72



and L is the characteristic scale of the largest eddies in the particular region of the
flow. Thus, in the same way molecular motion leads to diffusion of momentum and
scalar quantities such as the temperature, one may imagine that the same effect
in turbulence is produced by the individual eddies. A value of L can be estimated
by assuming some sort of local equilibrium between the power delivered by the
advection force by the largest eddies, ρũ · (ũ · ∇)ũ ∼ ũ3

L/L, and the dissipation rate
ϵ:

L ∼ k3/2

ϵ
⇒ νT ∼ k2

ϵ
. (12.5)

Typically, one reabsorbs the molecular viscosity in νT , ν + νT → νT and Eq. (12.2)
takes the form

ρD̄tūi + ∂iP̄ = f ext
i + ∂j(µT∂jūi), µT = ρνT . (12.6)

The turbulent viscosity µT plays a fundamental role in the energy budget of the
flow. While in the case of molecular viscosity, the energy of the flow was directly
converted to heat, the eddy viscosity transfers energy from the mean flow to the
turbulent fluctuations. One can get some intuitive understanding of the mechanism
by referring to the concept of added mass introduced in Sec. 8.2; this is the mass of
the fluid that a solid object drags along in its motion. Turbulent eddies continuously
replace chunks of the moving fluid with other fluid masses that have initially zero
velocity. The work required to overcome the viscous drag and keep the body in
motion is then precisely the work required to accelerate those masses to the speed
of the body.

We can exploit the concept of eddy viscosity to derive an effective equation for
the transport of k. The structure of the equation is very similar to that of the
heat transport equation (7.9), with eddy diffusion of k replacing molecular diffusion
of T and turbulent energy production from the work against the turbulent stress
replacing viscous heating. The result is

D̄tk = ∇ · (νT∇k) + 2νT ||¯̇s||2 − ϵ, (12.7)

We can derive a similar equation for ϵ:

D̄tϵ = ∇ · (νϵ
T∇ϵ) +

cϵ

k
[2νϵ

T ||¯̇s||2 − ϵ], νϵ
T ∼ νT , νϵ

T ∼ νT , c ∼ 1. (12.8)

Equations (12.6-12.8) constitute the so-called k − ϵ model of turbulence.
Building something that goes beyond an empirical model of turbulence appears

at the present state of knowledge a very difficult task. Perturbative treatment of the
equation, in particular, does not work (such an approach would correspond to expand
around a lowest-order Re → 0 dynamics that has no relation with turbulence). On
the other hand, brute force numerical simulation of the Navier-Stokes equation is
usually unfeasible (an atmospheric flow may involve eddies ranging from hundreds
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of meters to the millimeter scale). There are alternative approaches in which the
Navier-Stokes equation is numerically solved with a grid scale that excludes the
smallest eddies in the flow (large-eddy simulations or LES). As in the case of the
k − ϵ model, the effect of the unresolved eddies is modeled by introducing an eddy
viscosity νT ∼ lgridũsubgrid, in which the large scale L and the turbulent velocity
ũL are replaced by the scale of the grid lgrid and the characteristic velocity ũsubgrid

of the unresolved eddies; both quantities lgrid and ũsubgrid must in some way be
parameterized.

12.1 Homogeneous isotropic turbulence

Turbulence is spatially inhomogeneous almost by definition. The inhomogeneity
scale is fixed by the geometry of the problem: in the case of a turbulent pipe flow,
the diameter of the pipe; in the case of a turbulent wake downstream of a solid body,
the width of the wake; in the case of a flow over a plane surface, the thickness of
the boundary layer. The inhomogeneity scale itself may vary with the position (the
distance downstream of the solid obstacle or along the plane surface).

Typically, the characteristic scale of the mean flow and the size L of the largest
eddies are comparable:

L ∼ ū/∂xū, (12.9)

and the statistics of the large eddies are in general neither spatially homogeneous nor
isotropic. Nevertheless, if the turbulence is sufficiently strong, eddies at scales l ≪ L
will be present, which will see turbulence as locally homogeneous and isotropic.
Furthermore, since the dynamics of smaller eddies is faster than that of larger eddies,
their statistics can be assumed to be stationary.

A necessary condition for isotropy is that the strain on eddies at scale l ≪
L mainly comes from eddies of comparable scale. In other words, the turbulent
dynamics at a sufficiently small scale must be local in scale. We want in particular
that the strain on eddies at scale l ≪ L from eddies at scale L and from the mean
flow (which are both anisotropic) be negligible.

We can identify in a turbulent flow three ranges of scales:

• An integral scale L of large eddies which interact directly with the mean flow
and are sensitive to the geometry of the flow domain.

• An internal scale η of the smallest eddies, for which Reη = ηũη/ν ≲ 1 and the
effect of viscosity is dominant.

• An intermediate “inertial” range L ≪ l ≪ η in which eddies are sufficiently
small for hypotheses of homogeneity and isotropy to hold, and at the same
time sufficiently large for the dynamics to be inviscid.
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Kolmogorov was able, based on such simple hypotheses, to derive the energy
spectrum in the inertial range of turbulence and an expression for the internal scale
η. The simplest derivation only requires dimensional analysis, based on the hypoth-
esis of self-simiilarity and independence of the inertial range dynamics on viscosity.
Such hypothesis contain in a subtle way the condition that small-scale turbulent fluc-
tuations are sufficiently random and organized small-scale structures do not create
bottlenecks in the energy transfer. We can get an insight into the physics underlying
the Kolmogorov theory by looking at the dynamics of a single vortex at scale l.

If vortices are distributed uniformly in the flow domain, the contribution to the
turbulent energy density by eddies at scale l will be kl ∼ ũ2

l . Vortex stretching
transforms vortices at scale l into vortices at scale, say, l/2 in a characteristic time
τl, which, if the process is dominated by vortices of comparable size, will coincide
with the eddy turnover time

τl ∼ l/ũl. (12.10)

We can visualize the process as a turbulent cascade in which energy is transferred
from eddies at scale L to eddies at scale L/2, and from there to smaller eddies
until one reaches the internal scale η. Now, for the process to be stationary, the
energy flux from one scale to the next must be scale-independent and equal viscous
dissipation:

Πl ∼
kl
τl

∼ ũ2
l

τl
= Π = ϵ. (12.11)

From Eqs. (12.10) and (12.11) we then get the scaling law (Kolmogorov scaling)

ũl ∼ (ϵl)1/3. (12.12)

We can now verify that the contribution to the velocity increment ũ(x + l, t) −
ũ(x, t) from eddies at scale l is indeed the largest. We verify immediately that the
contribution of vortices with l′ ≪ l is ũl′ ∼ ũl(l

′/l)1/3 ≪ ul. On the other hand,
if we imagine the eddies to be smooth objects, such that their velocity field can be
Taylor expanded, the contribution to ∆lũ(x, t) = ũ(x + l, t) − ũ(x, t) from eddies
with l′ ≫ l will be ∼ ũl′l/l

′ ∼ ũl(l/l
′)2/3 ≪ ũl. Now, stretching of vortices at scale

l is produced by velocity differences at separation l; the fact that the difference
∆lũ(x, t) is dominated by eddies of size l then confirms the picture of local energy
transfer in scale as the result of the interaction of vortices of comparable size.

The fact that the difference ∆lũ(x, t) is dominated by eddies of size l allows us
to write Eq. (12.12) in the equivalent form

|ũ(x+ l, t)− ũ(x, t)|2 ∼ ϵ2/3l2/3, (12.13)

which tells us that for η → 0 the turbulent velocity field becomes non-differentiable
in space. The velocity field itself, however, remains finite and the same property is
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shared by the turbulent kinetic energy:

k =
+∞∑
n=0

kn ∼
+∞∑
n=0

ũ2
ln/2 < ∞, ln = 2−nL. (12.14)

We can use Eq. (12.12) to evaluate the internal scale η. Proceeding as in the
case of the turbulent energy, the viscous dissipation ϵ can be expressed as a sum of
contributions by vortices at different scales. We see from Eq. (12.12), that the sum
is dominated by eddies at scale η := L2nη :

ϵ = 2ν|∇u|2 ∼ ν
∑
n

ũ2
lnl

2
n ∼ νϵ2/3L−4/3

nη∑
n=0

24n/3 ∼ νϵ2/3η−4/3. (12.15)

From here we obtain

η ∼ ν3/4ϵ−1/4, (12.16)

which is called the Kolmogorov scale of the flow. At scales below η the flow is
dominated by viscosity and could be described using the Stokes equation (5.10).
We can then verify that for l < η, |ũ(x+ l, t)− ũ(x, t)|2 ∼ l2; in other words, the
turbulent velocity field at sufficiently small scale is smooth.

From Eqs. (12.10) and (12.13) we get the scaling for the eddy turnover time

τl ∼ ϵ−1/3l2/3. (12.17)

The time required for vortex stretching from L to η to complete is

τL→η ∼
∑
n

τL2−n ∼ τL
∑
n

2−2n/3 ∼ τL, (12.18)

independent of ν, which implies that the times required in the ν → 0 limit to reduce
integral scale vortices to infinitesimal smithereens remains finite.

We can take the limit l → L in Eq. (12.13) and express the viscous dissipation
in terms of properties of the large scale flow:

ϵ ∼ ũ3
L

L
. (12.19)

We find again the result that viscous dissipation remains finite in the ν → 0 limit; the
only thing that changes is the Kolmogorov scale that goes to zero. By substituting
Eq. (12.19) into Eq. (12.16) we are able to write the ratio L/η of the maximum and
minimum scale in the turbulent flow in terms of the Reynolds number:

L

η
∼

(LũL

ν

)4/3

= Re4/3, (12.20)

which allows us to estimate the number of grid points required in a numerical sim-
ulation of a turbulent flow as ∼ Re4.
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12.1.1 Time structure of the inertial range

The Kolmogorov law, Eq. (12.13), gives us information on the spatial structure of
the turbulent flow. The temporal structure is much more intricate; this turns out
to be one of the major stumbling blocks in the derivation of a theory of turbulence.
The fact is that the eddy turnover time τl defined in Eq. (12.10) describes the
time decay of correlations in a reference frame moving with the fluid, i.e. the decay
of Lagrangian time correlations. Eulerian time correlations will be affected by the
transport of eddies by larger eddies and the mean flow—a phenomenon called sweep
effect.

The magnitude of the sweep effect is determined by the transit time of the
vortices in front of a fixed probe; in the case of vortices of size l:

τEl ∼ l/u ∼ l/ū. (12.21)

We see from Eqs. (12.17) and (12.21) that for l ≪ L, τEl ≪ τl; this tells us that
vortex stretching, although crucial for the dynamics of the flow, only contributes a
correction to Eulerian correlations.

The fact that the turbulent dynamics is properly described only in a Lagrangian
frame, enormously complicates the derivation of a theory of turbulence based on the
Navier-Stokes equation. The fact that vortices at scale l can be approximated as
frozen on the time scale of τEl , however, simplifies experimental measurements. We
can in fact approximate

u(x, t)− u(x, 0) ≃ u(x− ūt, 0)− u(x, 0), t ≪ L/ū ∼ τL, (12.22)

which is called Taylor’s frozen-turbulence approximation. Equation (12.22) tells us
that it is possible to reconstruct an instantaneous spatial section of a turbulent flow
from the time series of the velocities measured by a fixed probe (an anemometer).

12.1.2 Transport of a passive scalar

The heat transport equation (7.18) is the first example of transport equation for a
scalar quantity we have considered in these notes; in the case of an incompressible
flow, it takes the form

DtT = κ∇2T + h, (12.23)

where h is a generic source term. The transport of a substance, such as e.g. a
pollutant in the air, will obey an equation of identical form, with T identifying in
this case the substance concentration. If there is no feedback on the flow (in the
case of the temperature, this means that convection is negligible), we say that T
behaves like a passive scalar.

We want to study passive scalar transport by turbulence. Suppose we have
a localized heat source h that generates an inhomogenous temperature profile in
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the surroundings. An inhomogeneous time-dependent but non-turbulent flow is
sufficient to generate mixing; turbulence, however, contributes to the process, with
many characteristics in common with the turbulent cascade of velocity fluctuations
previosly discussed: large scale inhomogeneities in T are generated by the source
h and converted to smaller and smaller scales fluctuations which are eventually
smoothed out by diffusion. We will have an integral scale LT where the effect of
the flow geometry and the source h are substantial, followed by an inertial range
where both h and κ play a negligible role, and an internal scale ηT where diffusion
is dominant.

Let us focus on the inertial range. From Eq. (12.23) fluctuations at scales
ηT ≪ l ≪ LT behave like a frozen field. We have seen, when studying the dynamics
of vorticity in 2D flows (see Sec. 9.3), that a frozen scalar has an infinite set of
global invariant ∫

d3xF (T (x, t)) = constant, ∀F. (12.24)

In particular, we have a quadratic invariant

kT =
1

2

∫
d3xT 2(x, t), (12.25)

which behaves like a sort of energy of the temperature fluctuations. We can then
repeat the same steps in the case of the velocity fluctuations and introduce a flux
in scale of the temperature fluctuations

ΠT
l ∼ T̃ 2

l

τl
∼ ϵ1/3l−2/3T̃ 2

l ∼ ϵT , (12.26)

where

ϵT = κ|∇T |2 ∼ κ
T̃ 2
ηT

η2T
(12.27)

is the dissipation of temperature fluctuations by diffusion. Proceeding as in the case
of the velocity fluctuations we get

|T̃ (x+ l, t)− T̃ (x, t)|2 ∼ ϵT ϵ
−1/3l2/3 (12.28)

and in the case ν ∼ κ

ηT ∼ κ3/4ϵ−1/4. (12.29)

Experiments and numerical simulations support Kolmogorov scaling both for the
velocity and passive scalar field. There are corrections, whose existence is confirmed
by mathematical analysis of Eq. (12.23). The smallness of the corrections, however,
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suggests that the Kolmogorov cascade picture is correct and the role of the infinite
set of conserved quantities in Eq. (12.24) is small.

A possible explanation of why higher-order invariants can be disregarded is that
only F (T ) = T 2/2 can be decomposed as a sum of scale-dependent terms. To see
why this is the case, it is necessary to work in Fourier space:

T̃k(t) =

∫
d3xT (x, t)e−ik·x. (12.30)

Let us consider the case F is a simple power of T (which covers the case F is regular
in T = 0 and can therefore be expressed as a Taylor series in T ). We have

In =

∫
d3x T̃ n =

∫
d3x

∫ n∏
j=1

d3kj
(2π)3

T̃k1 . . . T̃kn exp
(
− ix ·

n∑
j=1

kj

)
= (2π)3

∫ n∏
j=1

d3kj
(2π)3

T̃k1 . . . T̃knδ
( n∑

j=1

kj

)
. (12.31)

As claimed, only I2 is a sum of contributions dependent on a unique scale k−1:

I2 =

∫
d3k

(2π)3
|T̃k|2. (12.32)

In all other cases, the integrand of In depends on more than one wavevector, and
there will be contributions in which some of the wavevectors lie out of the inertial
range. For such contributions, local transfer in scale of a conserved quantity could
not be invoked.

12.1.3 Two-dimensional turbulence

The mechanism of vortex stretching, which determines the dynamics of turbulence
in three dimensions, is absent in two dimensions. Another difference with the 3D
case is the presence of a second quadratic invariant, enstrophy, which leads to the
question of whether energy or enstrophy determines the structure of the turbulent
cascade. Also in three dimensions there is a second quadratic invariant, helicity;
however, while zero enstrophy would require a flow that is globally potential (and
therefore non-turbulent), in order to have zero helicity it is sufficient that the flow is
globally reflection invariant. Thus, while an energy kl at scale l implies an enstrophy
content at that scale El ∼ kl/l

2, in the case of helicity we can only state |Il| ≲ kl/l.
With all the caveats put in place, let us try to understand whether a local turbu-

lent cascade is possible in two dimensions. Let us start by considering the possibility
of an enstrophy cascade and define an enstrophy flux ΠE,l and an enstrophy dissi-
pation ϵE , which at stationarity are going to be equal. The same argument leading
to the Kolmogorov scaling in Eq. (12.13) yields in the present case

ϵE ∼ El
τl

∼ ũ3
l

l3
⇒ ũl ∼ ϵ

1/3
E l; (12.33)
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enstrophy dissipation equals the enstrophy injection, which is ∼ L−2 times the
energy injection; hence ϵE ∼ ϵ/L2.

We immediately find a difficulty in the fact that the scaling ũl ∝ l implies that
the contribution to ∆lũ(x, t) = ũ(x + l, t) − ũ(x, t) from vortices at scale l′ ≫ l is
of the same order as that of vortices at scale l. This clearly weakens a hypothesis
of local enstrophy transfer in scale. A more substantial difficulty is that energy
is injected in the flow side by side with enstrophy. However, while ΠE,l = ϵE is
constant, Πk,l ≡ Πl ∼ ϵE l

2 goes to zero for l → 0. Stationarity then requires that
Πl = 0 independent of scale. The alternative in which the dynamics is governed by
energy transfer and ũl ∼ (ϵl)1/3 as in Eq (12.12) is not viable since it would lead
to ΠE,l ∼ ϵ/l2, which diverges at l → 0. The only solution is that while enstrophy
is transferred from large to small scales, energy is transferred to scales larger than
those of the forcing. This is indeed the situation observed in numerical simulations
of 2D turbulence, with an enstrophy cascade to smaller scales and an energy cascade
to larger scales simultaneously present

ũl ∼

{
(ϵ/L2)1/3l, l ≪ L,

(ϵl)1/3, l ≫ L.
(12.34)

The effect of helicity on the energy cascade in 3D flows is less dramatic. The
fact that ΠI,l ≲ Πk, l/l = ϵ/l allows to enforce simultaneously the condition that
the two fluxes Πk,l and ΠI,l are constant in scale: ΠI,l = ϵI ∼ ϵ/L and Πk,l = ϵ. It
is not necessary to invoke energy and helicity cascades going in opposite directions.
The Kolmogorov scaling in Eq. (12.13) at scales k ≪ L is the only one observed in
experiments and numerical simulations.

12.2 Suggested reading

• P. Kundu, “Fluid Mechanics”, Secs. 12.1-7 (Ac. Press 2015)
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