
Esercitazione del 17/10/2010

Problema A (1) Qual è l'accelerazione centripeta dovuta alla rotazione della Terra per un oggetto che si trova sull'equatore? (2) Quale dovrebbe essere il periodo di rotazione della Terra affinché questa accelerazione sia uguale a 9.8 m/s²?

Problema B Una persona sale in 90 s una scala mobile ferma lunga 15 m. La stessa persona, stando ferma sulla scala mobile quando è in movimento, arriva in cima dal fondo in 60 s. (3) Quanto tempo impiegherebbe per salire, camminando sempre allo stesso passo, mentre la scala è in movimento? (4) La risposta dipende dalla lunghezza della scala?

Problema C Sulla scatola di massa 2.0 Kg in figura (vista dall'alto), agiscono due forze, delle quali una sola è indicata. Nella figura è segnalata anche l'accelerazione della scatola. Trovata la seconda forza (5) nella notazione con i versori e (6) in intensità e (7) in direzione.

Problema D Un corpo puntiforme pesa 22 N in un luogo dove l'accelerazione di gravità è 9.8 m/s². Quali saranno (8) il suo peso e (9) la sua massa in un altro luogo, dove l'accelerazione di gravità è 4.9 m/s²? Quali saranno (10) il suo peso e (11) la sua massa in un punto dello spazio dove l'accelerazione di gravità è zero?

Problema E Un blocco A con massa m1 = 3,70 Kg, su un piano privo di attrito inclinato di un angolo $\mathcal{G} = 30,0^{\circ}$, è collegato, da una corda che passa sopra una puleggia priva di massa e di attrito, a un altro blocco (B), sospeso in verticale, con massa $m_2 = 2,30$ Kg (vedi figura). Quali sono (12) il valore dell'accelerazione di ciascun blocco, (12) la direzione dell'accelerazione di m_2 e (13) la tensione nella corda?

Problema F Tre blocchi, collegati fra loro come in figura sono spinti verso destra su un piano orizzontale privo di attrito da una forza $T_3 = 65,0$ N. Se $m_1 = 12,0$ Kg, $m_2 = 24,0$ Kg ed $m_3 = 31,0$ Kg, calcolare (14) l'accelerazione del sistema, (15) la tensione T_1 e (16) la tensione T_2 .

m_1	T_1		T_2	m.	T ₃
		m_2	11/21	7743	90