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Chaos in the three-body problem:
the Sitnikov case
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Abstract. We consider the Sitnikov problem, an especially
simple case of the restricted three-body problem, which
becomes highly chaotic as the value of a certain parameter is
increased, the signs of chaos appearing neatly. We argue that
it provides a very clear example for introducing students to
non-integrability and chaos.

Resumen. Consideramos el problema de Sitnikov, un caso
especialmente simple del problema de los tres cuerpos, que se
hace altamente caótico al aumentar el valor de un cierto
paramétro, apareciendo nı́tidamente los signos del caos.
Creemos que ofrece un ejemplo muy claro para introducir a
los estudiantes en la no integrabilidad y el caos.

1. Introduction

In standard courses on analytical dynamics, the Liouville
theorem plays an important role: it states that an N

degrees of freedom Hamiltonian system is completely
integrable if it has N functionally independent constants
of motion in involution (i.e. such that the Poisson
bracket of any two of them vanishes). Moreover,
the celebrated Noether theorem gives a correspondence
between such constants and the symmetries of the
system, provided that the latter are known. In this way,
the absence of enough symmetry is known to be the key
fact that breaks the integrability and leads to irregular
behaviours in dynamical systems. It is customary to
mention, as an example of a system without enough
symmetry, and hence non-integrable, the very famous
three-body problem. However, at undergraduate level,
explicit examples of the irregular dynamics due to its
non-integrability are too complex to be considered.
We will discuss here an especially simple case of

this problem, called the Sitnikov problem, explicitly
showing the chaotic behaviour it displays through the
so-called ‘indicators of chaos’ (phase space orbits,
power spectrum, autocorrelation function, Liapunov
exponent), and interpreting the results in the light of
the Kolmogorov–Arnold–Moser (KAM) theorem which
we briefly outline in section 2. In section 3 we
introduce the Sitnikov system and its main features.
In section 4 we present the results of the numerical
computations and, finally, we conclude in section 5
that the system is suitable for undergraduate courses in
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theoretical mechanics.
Here lies the interest of this problem: it allows

one to get the taste of the general three-body case
with a simple one-dimensional dynamical system, its
study being clearly accesible to beginners in numerical
methods.

2. The KAM theorem

One of the most celebrated dynamical results of the
last decades is the KAM theorem but unfortunately it
is too difficult for undergraduate students. We will
sketch it here in a very simple fashion, leaving aside
the technical details. This is enough for our purposes;
a more rigourous formulation can be found in [1, 2].
Let H0 be a completely integrable N -dimensional

Hamiltonian, H1 a perturbation, and � a small
parameter. Consider the Hamiltonian H = H0 + �H1.
As H0 is integrable, action-angle variables do exist and
the unperturbed motion in phase space takes place in N -
dimensional embedded tori. The perturbation usually
breaks some symmetry and renders the problem non-
integrable.
The KAM theorem gives us detailed information

about what happens: some of the original tori still
exist, still containing regular phase space orbits, but
some others are destroyed by the perturbation, the
corresponding orbits being free to explore higher-
dimensional regions of phase space (always bounded, if
N  2, by the conserved tori). The number of conserved
tori is smaller, the larger the perturbation.
As most of the time the systems are assumed to

be autonomous, it seems convenient to explain briefly
how to treat the non-autonomous case. Let H0 be
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a completely integrable one-dimensional Hamiltonian
with action-angle variables (I, '), for which the phase
space orbits are closed and periodic, each one with
its frequency !. In the (I, ', t) space, the orbits are
contained in embedded invariant cylinders parallel to
the t axis. Now, suppose we add a small perturbation
H1, i.e. that the Hamiltonian changes to H = H0+�H1.
We are interested in the case in which H1 is periodic in
time. If the system is non-degenerate, that is if the
condition @2H0/@I 2 6= 0 is fulfilled, the KAM theorem
guarantees the conservation of all those cylinders the
frequency of which is irrational enough, in the sense
that for all integers n and m

���! � m

n

��� >
k(�)

n2.5
, lim

�!0
k(�) = 0.

These cylinders may be, however, distorted.
We will see that our numerical computations display

a very clear image of this structure.

3. The Sitnikov problem

The system consists of two equal-mass primary stars
(m1 = m2 = m/2) moving in Keplerian ellipses of
eccentricity e (0  e < 1) in the xy plane, while a test
body of negligible mass (called ‘the planetoid’) moves
along the z axis [3, 4]. The origin of coordinates has
been taken as the centre of mass of the primaries. It is
easy to see [5] that the motion of the planetoid remains
forever in the z axis.
We will use units in which the total mass of the

primaries is m = 1, its period is 2⇡ , and the
gravitational constant G = 1. The motion of the
test body is one-dimensional, and constitutes a one-
dimensional dynamical system.
Let r(t) be the distance of the primaries to the origin.

Then it is a simple exercise to see that the Hamiltonian
function by unit mass of the planetoid is

H(z, v, t) = v2

2
� 1

p
z2 + r2(t)

. (1)

Note that, from well known results in the two-body
problem [12], and taking into account our choice of
units, we have

2r(') = 1� e2

1+ e cos'
= 1� e cos' + O(e2).

We can eliminate the polar angle ' as a function of t

from

t =
Z '

0

4r2('0)p
1� e2

d'0

and, hence, performing the integral (discarding terms of
higher orders in e) we arrive finally at

r(t) = 1
2 (1� e cos t) + O(e2), (2)

so, taking (2) into account, we may write (1) up to first
order in the eccentricity as
H(z, v, t) = H0(z, v) + eH1(z, v, t)

= v2

2
� 1

p
z2 + 1/4

� e
cos t

4(z2 + 1/4)3/2
. (3)

Note that H(z, v, t) = H(z, v, t + 2⇡), i.e. the
Hamiltonian has period 2⇡ in time, which is an
important technical detail in the rigourous analytical
studies of the problem [1, 2] as it allows one to apply the
KAM theorem. In the numerical calculations we have
restricted ourselves to small values of the eccentricity
(that, as we see, acts as perturbation parameter � = e),
e < 0.08, so that (3) will be our Hamiltonian henceforth.
The Hamiltonian equations of motion are

ż = v, v̇ = � 8z
(4z2 + 1)3/2

� e
24z

(4z2 + 1)5/2
cos t.

(4)
For e = 0, we see that H is time-independent (hence
invariant under time translation), the energy H = E
being so conserved (which is just a consequence of the
aforementioned symmetry through Noether’s theorem).
It is thus a one-dimensional autonomous system with
one constant of motion and it is then completely
integrable. In fact its complete solution is expressable
in terms of elliptic integrals [5, 6], but for e > 0 this
symmetry is destroyed, because H takes an explicit
dependence on time. Neither the energy, nor any other
quantity is now conserved thus rendering the problem
non-integrable.
Now, by means of the KAM theorem, we can make

predictions about the expected behaviour of this system.
In order to visualize the situation better, we take time as
a third coordinate of phase space, so that the solutions
of Hamilton’s equations for the unperturbed motion are
contained in invariant embedded cylinders. When we go
to the perturbed motion, i.e. to small but non-vanishing
values of e, some of these cylinders will remain, but
others will be destroyed giving place to erratic solutions
bounded by the conserved ones. This is exactly the
picture we find in the next section when looking at phase
space orbits.
Numerical studies of certain aspects of the Sitnikov

problem appear in [7, 8]. For a modern formulation and
some new results on this problem see [9, 10].

4. The chaos indicators

Here we assume some acquaintance with the most
commonly used indicators, as they are described in
standard texts, [2, 11, 14] so we do not repeat here a
detailed description.
The equations of motion were integrated using three

different methods, varying the integration steps in order
to be sure of the accuracy of the results. The methods
employed were a typical fourth-order Runge–Kutta
approach, the Adams–Moulton predictor–corrector [15]
and the very accurate method of Bulirsch and Stoer [16].
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Figure 1. Phase portrait for e = 0.002.

Figure 2. Phase portrait for e = 0.07.

4.1. Orbits in phase space
Remember that we are allowing time to act as a third
coordinate of phase space. In autonomous systems with
more than one degree of freedom, it is customary to

study the Poincaré map, defined by means of a suitable
section of the phase space (see [11–14]). However, it is
easier and equally clear in this one-degree-of-freedom
non-autonomous case to use instead the stroboscopic
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Figure 3. Chaotic trajectory in phase space.

Figure 4. Representative erratic trajectory in the chaotic regime.

projection, obtained by plotting the position z and the
velocity v of the planetoid (corresponding to a certain
solution) for time instants tn = 2n⇡ .
For e = 0, the motion occurs in invariant cylinders

that project over closed curves of the plane (z, v). The
origin corresponds to a stable equilibrium point with

a minimum energy E = �2, and it is surrounded
by periodic and bounded orbits of negative increasing
energy until we arrive at the orbit corresponding to
E = 0 which is the separatrix between bounded and
unbounded motions of the planetoid.
For e > 0 this structure is clearly broken. This is
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barely visible in figure 1, for the very small value of
e = 0.002, but it is clearly seen in figure 2, which
represents only four solutions with the higher value
of the eccentricity e = 0.07: just a few invariant
cylinders survive and between them the orbits exibit a
characteristic area filling property. Now look at figure 3:
it shows only one solution, with initial energy close to
zero (where even the unperturbed (e = 0) motion is
unstable, because, in the zone in phase space close to
the E = 0 separatrix, even the smallest perturbation may
change drastically the nature of the motion, so rendering
unbounded an originally bounded trajectory), in greater
detail. No conserved tori bound the orbit now and it is
even possible for the planetoid to escape the system and
arrive at infinity, as originally proved by Sitnikov [3].
The erratic nature of the orbit is clear from the figure.

4.2. Trajectories in configuration space
As we are dealing with a one-degree-of-freedom system,
it is possible to explicitly display the motion z(t)

of the planetoid. In figure 4 we see instead a
solution computed for e > 0; even when no definitive
conclusions could be made just by looking at this figure,
no regularity is observed here and the motion seems
highly erratic.

4.3. Power spectrum
Apparently irregular trajectories in configuration or
phase space may still hide an underlying regular
multiperiodic behaviour. The power spectrum of this
solution is a well known way of clarifying this point
discerning between complicated multiperiodic motions
and the truly chaotic ones.
Let {zj } = {z(j1t), j = 1, . . . , n} be a discretization

of the trajectory (called ‘the signal’), obtained by
numerical integration over a total time lapse tmax = n1t ,
1t being a fixed time interval, the integration step for
instance. Define the discrete Fourier transform of the
signal as [13]

z̃k = 1p
n

nX

j=1
zj e�2⇡ ikj/n,

which can be interpreted as a discretization of a function
of the frequency, z̃k = z̃(k1f ), with 1f = 2⇡/tmax.
The power spectrum is defined then as Ek = |z̃k|2. It
is, therefore, a function of k (i.e. of the frequency), its
peaks giving the frequencies of the motion.
In figure 5, we see the power spectrum (scaled

logarithmically) of a solution when e = 0, which clearly
shows only one fundamental frequency and its second
harmonic. Comparing it with figure 6, corresponding to
the same solution as figure 6, the aperiodic nature of the
motion is quite clear: it displays a continuous spectrum
of frequencies.

4.4. Autocorrelation functions
Intimately related to the power spectrum, these functions
most clearly exhibit the loss of information along the
trajectory. Let hzi =

Pn

1 zk/n be the mean value of the
signal. The autocorrelation function of the signal Cm is
defined as

C(m1t) ⌘ Cm = 1
n

nX

i=1
z0

iz
0
i+m, z0

i = zi � hzi.

The function Cm gives a measure of how much zi � hzi
(the difference between the signal and its mean value)
keeps a memory of its value after an interval m1t of
time. If the signal changes only slightly over m steps,
all the terms in the sum will have the same sign and the
correlation will be high, Cm being large. If, on the other
hand, the signal changes erratically, the summands will
cancel and Cm will be small. This explains why the
autocorrelation function of chaotic systems decreases
very fast to zero with increasing m, while in the regular
case the behaviour is very different, without going to
zero or being even periodic.
The autocorrelation function of a typical periodic e =

0 solution is itself periodic and no loss of information
occurs. However in figure 7, corresponding to the
same chaotic solution already considered, the function
tends clearly to zero after some time, revealing that
information is lost.

4.5. Lyapunov exponents
For regular systems, the rate of separation of initially
nearby trajectories (with close initial conditions) is
linear, so that any error in the initial conditions is not
greatly magnified along the evolution. But for chaotic
systems this rate may be exponential, generating the so-
called strong sensitivity to the initial conditions (SSIC),
which is often taken [17] as the very definition of chaotic
dynamics. When SSIC appears, the lack of infinite
accuracy in the determination of the initial conditions
leads to the impossibility of making accurate predictions
about the behaviour of the system.
If we consider two close initial conditions, separated

by an initial distance D0, and let the corresponding
solutions evolve, then, after a certain time, the distance
between them behaves, for chaotic systems in which
SSIC is present, as

d = d0 eKt ,

where K is the leading Lyapunov exponent. In this way,
a numerically computed positive Lyapunov exponent is
taken to be a very good indicator of the existence of
SSIC and, hence, of the chaotic nature of the motion
[18, 19].
To compute the Lyapunov exponent, we have used

here the algorithm of Benettin et al [18]: take an
initial condition (z0, v0) and a certain time lapse
⌧ = k1t (for some k) and form the sequence
{(z0, v0), (z⌧ , v⌧ ), (z2⌧ , v2⌧ ), . . .} (taken from the output
of the numerical integration). Another initial condition
(z0
0, v

0
0) is then chosen (at a small distance d0 in phase
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Figure 5. Power spectrum of a periodic trajectory for e = 0.

Figure 6. Power spectrum for the solution of figure 4.

space from the first one). The corresponding solution is
integrated during the interval ⌧ until the value (z0

⌧ , v
0
⌧ ),

computing then the distance d1 = dist[(z⌧ , v⌧ ), (z
0
⌧ , v

0
⌧ )].

The second trajectory then approaches to the first one,

by taking a point in the line joining (z⌧ , v⌧ ) and (z0
⌧ , v

0
⌧ ),

such that its distance to (z⌧ , v⌧ ) is again d0. This point is
taken as the initial condition of another trajectory which
is integrated during the time ⌧ to obtain the point (z00

⌧ , v
00
⌧ )
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Figure 7. Autocorrelation function of the solution of figure 4.

Figure 8. Liapunov numbers for two solutions with the same initial conditions, one with e = 0, the other with e = 0.06.

and define d2 = dist[(z2⌧, v2⌧ ), (z00
⌧ , v

00
⌧ )]. The process

of integrating during time ⌧ and approaching to the first
trajectory is iterated, obtaining therefore, a sequence of

distances {di}, after which the numbers

kp = 1
p⌧

pX

i=1
ln

di

d0
,
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are computed. The important result is that this sequence
converges and that

K = lim
p!1

kp,

where K is the Lyapunov exponent. It is clear from the
explanation of the algorithm that it measures how fast
a trajectory separates from the neighbouring ones. If
K > 0, the separation grows exponentially, which is a
sign of chaos. We show in figure 8 the evolution of kp ,
which clearly converges to values of K .
We have made the calculation for the same initial

conditions but with e = 0 the first time and e > 0
the second. The difference between the two cases is
apparent: when e = 0 the exponent tends clearly to
zero indicating that no chaos is present, but when e > 0
this parameter converges to a positive non-null value,
hence confirming the existence of chaotic dynamics.

5. Conclusions

We have performed a study of the onset of chaotic
motion in the Sitnikov problem and of the general
features of this system as predicted by the KAM
theorem.
At undergraduate level, it is clearly impossible

to present detailed and rigourous analytical studies
of nonlinear systems. This applies, in particular,
to the three-body system, which is unfortunate in
view of its enormous importance in the development
of dynamical ideas as the first case of chaos ever
considered. It is, therefore, desirable to find
simple and accesible ways to teach chaotic dynamics
to these students, and this is where numerical
experiments with the indicators of chaos and some
applications of the KAM theorem may be very
useful.
The Sitnikov problem seems an attractive example

for exploring and understanding the world of chaos.
Moreover, it has the additional interest of present-

ing a one-degree-of-freedom non-autonomous system,
when most of the examples of chaoticity appearing in the

literature are higher dimensional but autonomous. We
think that it may be useful for undergraduate courses in
classical mechanics.
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