

Università degli Studi di Cagliari Facoltà di Scienze MM.FF.NN. A.A. 2012/2013

Degree Program: Physics ("magistrale")

Course: Condensed-matter physics ("Struttura della materia")

Instructor: Vincenzo Fiorentini

Course contents

A. Solids: stability and ground state properties

Basics - Crystal lattices and symmetry (A c.4,5,6,7); cohesion of molecular and ionic solids (A c.19,20). Bloch theorem; energy bands (A c.8); "nearly-free electron" vs localized orbitals: plane waves vs tight binding (A c.9, 10). Density of states, critical points.

Interacting electrons - Drude and Sommerfeld electron gas. Drude-Lorentz dielectric response (A cap.1,2). Interacting electron gas at the Hartree-Fock level; correlation beyond HF according to Wigner and Thomas-Fermi (A c.17; P c.4,5). Cohesion of metals (P c.5, M c.11). Density-functional theory.

Lattice dynamics - Adiabatic approximation (P cap.2) and exceptions. Normal modes of vibration and acoustic-optical dispersion relations (A c.22). Quantization: phonons and boson statistics (A c.23).

B. Solids: response

Thermal and dielectric properties due to the lattice - Specific heat (A c.23), thermal expansion, fusion, stability in 1, 2, 3 spatial dimensions (A c.24; K c.4). Phonons in metals and electron-phonon interaction (A c.26). Dielectric response for phonons: longitudinal modes, polaritons (BG c.7.2).

Electronic dielectric response - Dielectric function and Kronig-Kramers relations. Longitudinal dielectric response: energy loss (G c.VII-7,8,9). Transverse dielectric response: optical constants, interband absorption (direct, indirect, dipole-allowed or forbidden). JDOS and critical points in 1, 2, 3D. Tauc relations (G c.XII-1.1,2,3).

Magnetism and phase transitions - Atom in magnetic field: diamagnetism; van Vleck and Curie paramagnetism (PM) (B c.2). Elementary Landau theory of phase transitions: symmetry breaking, order and disorder, rigidity, excitations, critical behavior (K c.2). Weiss theory of ferromagnetism (FM). Magnons and Bloch law (B c.5,6). FM vs antiFM coupling; basics of crystal field, quenching, Jahn-Teller, etc. (B c.4). Electron gas PM (Pauli) and FM (Stoner). Magnetic electron-gas oscillations in inhomogeneous magnetic field: RKKY interaction, spin waves, Kohn anomalies, and "apparent" antiFM (B c.7). Daring souls can also look at K c.6.

<u>Textbooks</u>

- A = Ashcroft-Mermin, *Solid state physics*
- B = Blundell, *Magnetism in condensed matter*
- BG=Bassani-Grassano, Fisica dello stato solido
- G = Grosso-Pastori, *Solid state physics*
- K = Khomskii, Basic Aspects of the Quantum Theory of Solids
- M = Marder, Condensed matter physics
- P = Phillips, *Advanced solid state physics*
- S = Singleton, Band Theory And Electronic Properties Of Solids

Course objectives

Learning the basics of solid state physics.

Prerequisites

Quantum mechanics. Atomic and molecular physics. Elements of statistical mechanics. Calculus and Fourier transforms.

Teaching techniques

Lectures and recitations (proportion 4 or 5:1). Practical session may be planned to demonstrate the actual calculation of properties of realistic systems with open source codes.

Final Examination

Oral examination.

Other information

Contact info: vincenzo.fiorentini@dsf.unica.it, http://www.dsf.unica.it/~fiore, 347 1410906 This document: http://www.dsf.unica.it/~fiore/sdm12eng.pdf