
Kohonen Self-Organizing Map for the Traveling Salesperson Problem

Lucas Brocki
Polish–Japanese Institute of Information Technology,

 ul. Koszykowa 86, 02-008
 Warsaw, Poland

lukasz.brocki@pjwstk.edu.pl

Abstract - This work shows how a modified Kohonen

Self-Organizing Map with one dimensional
neighborhood is used to approach the symmetrical

Traveling Salesperson Problem. Solution generated by
the Kohonen network is improved by the 2opt

algorithm. The paper describes briefly self-
organization in neural networks, 2opt algorithm and

modifications applied to Self-Organizing Map. Finally,
the algorithm is compared with Lin-Kerninghan

algorithm and Evolutionary Algorithm with Enhanced
Edge Recombination operator and self-adapting

mutation rate.

1 Introduction

The idea of the Traveling Salesperson Problem (TSP) is to
visit a set of n cities once and once only and return to the
starting city. It might look simple, but it was proved that
the TSP is NP-hard problem [10]. The search space is
huge: n!. Thus, it is not possible to check all solutions for
city sets with many thousands of cities and some
engineering problems like VLSI designing need 1.2
million cities [11]. A fast and effective heuristic method is
needed. The author intended to build a neural based
algorithm and compare it with two well know and very
effective heuristic methods: Lin-Kerninghan and
Evolutionary Algorithm with Enhanced Edge
Recombination operator.

2 Kohonen Self-Organizing Map basics

In 1975 Teuvo Kohonen introduced new type of neural
network that uses competitive, unsupervised learning[1].
This approach is based on WTA (Winner Takes All) and
WTM (Winner Takes Most) algorithms. Therefore, these
algorithms will be explained here briefly. The most basic
competitive learning algorithm is WTA. When input
vector (a pattern) is presented, a distance to each neuron's
synaptic weights is calculated. The neuron whose weights
are most correlated to current input vector is the winner.
Correlation is equal to scalar product of input vector and
considered synaptic weights. Only the winning neuron

modifies it's synaptic weights to the point presented by
input pattern. Synaptic weights of other neurons do not
change. The learning process can be described by the
following equation:

where i∈[0..numer of neurons] , W i represents

all synaptic weights of the winning neuron, η is learning

rate and x stands for current input vector. This simple
algorithm can be extended. The most common extension is
giving more chance of winning to neurons that are rarely
activated. However, WTM strategy has better
convergence than WTA. The difference between those
two algorithms is that many neurons in WTM strategy
adapt their synaptic weights in one learning iteration. In
this case not only the winner, but also it's neighborhood
adapts. The further the neighboring neuron is from the
winner, the smaller the modification which is applied to its
weights. This adaptation process can be described as:

for all neurons i that belong to winner's neighborhood.
W i stands for synaptic weights of neuron i and x is

current input vector. η stands for learning rate and N(i, x)
is a function that defines neighborhood. Classical Self
Organizing Map (SOM) can be created when function N(i,
x) is defined as:

where d(i, w) is Euclidean distance between winning and
i-th neuron. λ is neighborhood radius. To train Kohonen
SOM Euclidean distance between input vector and all
neural weights has to be calculated. Neuron that has the
shortest distance to input vector (the winner) is chosen and
it's weights are slightly modified to direction represented
by input vector. Then neighboring neurons are taken and
their weights are modified in the same direction. η and λ
are multiplied with Δη and Δλ respectively during each
learning iteration. These two last parameters are always
less than one. Therefore, η and λ become smaller during
learning process. At the beginning SOM tries to organize
itself globally and with following iterations it performs

N i , x={1 for d i , w 
0 for others }

W i W iN i , xx−W i

W i W ix−W i

more and more local organization, because learning rate
and neighborhood get smaller.

Figure 1: Kohonen SOM with two dimensional
neighborhood and input vector.

Kohonen SOM is shown in Figure 1. It maps input
vectors of any dimension onto map with one, two or more
dimensions. Input patterns, which are similar to one
another in the input space are put close to one another in
the map. The input vector is passed to every neuron. A
Kohonen SOM is made of a vector or matrix of output
neurons. If vector representation is chosen each neuron
has two neighbors (on the left and on the right). It is called
one-dimensional neighborhood:

Figure 2: One dimensional neighborhood of Kohonen
SOM

If two-dimensional matrix representation is used,
neurons have 4 neighbors (left, right, top and bottom).
This is classical two dimensional neighborhood (figure 3).
Neighborhood can be expanded. Instead of taking four
nearest neurons, 8 or more can be taken (figure 4). As
many dimensions can be used as needed: 1D, 2D, 3D or
more. However, 2D neighborhood is most common.

Figure 3: Classical two dimensional neighborhood

Figure 4: Extended two dimensional neighborhood of
Kohonen SOM

Basic SOM algorithm can be described as follows:

procedure train_SOM
begin
 randomize weights for all neurons

 for (i = 1 to iteration_number) do

 begin

 take one random input pattern
 find the winning neuron
 find neighbors of the winner
 modify synaptic weights of these neurons
 reduce the η and λ

 end

end

3 Experiments on self-organization

Most interesting results of self-organization can be
achieved in networks that have two dimensional input
vector and two-dimensional neighborhood. In this case
input to network consists of two values: x and y, which
represent a point in two-dimensional space. This kind of
network can map two-dimensional objects in such a way
that a mesh which covers this object is created. This
process is illustrated in Figure 5. Each example consists of
six squares. First one shows object that should be learned.
Second square illustrates network just after randomization

Figure 5: Self-organization of a network with two dimensional neighborhood.

of all neural weights. Following squares describe learning
process. Please note that each neuron (a circle) represents
a point whose coordinates are equal to neuron's weights.
These figures illustrate that Kohonen neural network is a
powerful self-organizing and clustering tool. However, it
is also possible to create a network with one dimensional
neighborhood and two dimensional input. Learning
process of this is shown in Figure 6.

It can be observed that this network tries to organize
it's neurons in such a way, that a relatively short route
between all neurons emerges. These experiments were a
stimulus to build a system based on Kohonen one-
dimensional SOM that would solve TSP problems.

4 SOM based TSP solver

To solve TSP problem a one dimensional network must be
created. Number of neurons must be equal to the number
of cities. If the weights of a neuron are equal to some
city's coordinates this neuron represents that city. In other
words a neuron and a city are assigned to each other and
there is a 1-to-1 mapping between the set of cities and the
set of neurons. All neurons are organized in a vector. This
vector represents sequence of cities that must be visited.
However, some modifications need to be done before the
SOM is able to fully solve this problem. This is because
the real-valued neural weights may never equal exactly the
coordinates of the cities. To solve the problem an
algorithm that would modify Kohonen solution, to one
that is valid, has been created. Positions of cities and
positions of neurons may not equal. However, adequate
neural weights and cities' coordinates are very close to
each other. An algorithm that modifies neural weights so
they equal to cities' coordinates has been applied. These
weights need to be modified in such a way to restore the
1-to-1 mapping assumed on the beginning. If neuron A is

assigned to a city B it means that weights of neuron A are
equal to coordinates of city B.

Scheme of the repair algorithm:

procedure repair

begin
 Iterate through all neurons

 begin

 nearest_city = find the nearest city to current
neuron

if (nearest_city is not assigned to any neuron)
 assign nearest_city and current neuron

else

 delete this neuron

 end

 Iterate through all cities

 begin

 if (current city is not assigned to any neuron)

 begin

 create a new_neuron and assign it to current
city

 nearest_neuron = find the nearest neuron to
current city
 insert new_neuron before or after
nearest_neuron, depending on which tour is locally

shorter

end

 end

end

After applying this algorithm a good and fast solution
is obtained, however it is not locally optimal. Therefore, it
needs to be optimized using well know 2opt algorithm. In
this case 2opt works fast even for large amount of cities,
because current solution is already good. Usually 2opt
does not change the solution a lot (Figure 8). The 2opt
algorithm is based on one simple rule. It selects a part of
the tour, reverses it, and inserts back in the cycle. If the

Figure 6: Self-organization of a network with one dimensional neighborhood.

new tour is shorter than the original cycle, then it is
replaced. The algorithm stops when no improvement can
be done. For example if there is a cycle (A, B, C, D, E, F)
and a path (B, C, D) is reversed, then the new cycle is:
(A, D, C, B, E, F). After 2opt optimization the solution is
locally optimal.

Figure 7: 2opt optimization. If there is a cycle (A, B, C,
D, E, F) and a path (B, C, D) is reversed, then the new
cycle is: (A, D, C, B, E, F)

Optimal Kohonen SOM training parameters should be
chosen adequately to number of cities to achieve best
results. It was found empirically that good training
parameters are:

• for 100 cities:
η = 0.6
Δη = 0.9997
Δλ = 0.999

• for 500 cities:
η = 0.7
Δη = 0.999985
Δλ = 0.9994

• for 1000 cities:
η = 0.9
Δη = 0.99992
Δλ = 0.9996

In every case the number of iterations was set to 25000.

5 The Experiment

Two types of tests were administered:
• Using city sets taken from TSPLIB. Some optimal

solutions are already there.
• Using randomly chosen cities.

TSPLIB city sets are rather hard to solve. The reason
for this is that in many cases cities are not chosen
randomly (Figures 9, 10). Often larger city sets consist of
smaller patterns. City set shown in Figure 10 consist of
two different patterns, but each of them is used eight
times. Therefore, the optimal tour is identical in each one
of these smaller patterns (Figure 10, left). SOM tries to
figure out a unique tour in each smaller pattern (Figure 10,
right).

Testing using randomly chosen cities is more objective.
It is based on the Held-Karp Traveling Salesman bound
[8]. An empirical relation for expected tour length is used:

L=k n⋅R
where L is expected tour length, n is a number of cities, R
is an area of square box on which cities are placed and k is
an empirical constant. For n100 it is:

Figure 8: SOM solution without 2opt optimization (left). There are two local loops on the left. First and last neuron can be
seen in the middle. They are not connected it the picture, but distance between them is also computed. The same solution
improved by 2opt (right). Loops on the left have been erased. Additional changes can be observed.

Three random city sets were used in this experiment
(100, 500, 1000 cities). Square box edge length was 500.

All statistics for SOM were generated after 50 runs on
each city set. When amount of iterations was adjusted to
100 average results did not change a lot. SOM can
generate a tour in relatively short time. 225 city set is
solved during just 300 ms, and 1000 city set in less then
2.5 second (using machine described later). Average tour
lengths for city sets up to 2000 cities are around 5 to 6
percent worse than optimum. SOM approach can generate
solutions that are almost always less that 10% worse from
the optimal tour. However, in most cases the difference is
just a few percent. SOM has been compared with
evolutionary algorithm (EA). EA used Enhanced Edge

Recombination (EER) operator[2, 5], Steady-State
survivor selection (where always the worst solution is
replaced), Tournament parent selection with tournament
size depending on number of cities and population size.
Scramble mutation was used. Optimal mutation rate
depends on amount of cities and state of evolution.
Therefore, self-adapting mutation rate has been used.
Every genotype has it's own mutation rate, which is
modified in a similar way as in Evolution Strategies. This
strategy adapts mutation rate to number of cities and
evolution state automatically, so it's not needed to check
manually which parameters are optimal for each city set.
Evolution stops when population converges. Population
size was set to 1000 (as in [5]). With smaller populations
EA did not work that well. When EA stopped it's best
solution was optimized by 2opt algorithm. Results for
both SOM and EA are shown in Table 2. All statistics for
SOM were generated after 50 runs on each city set. For
EA there were 10 runs of the algorithm for sets: EIL51,

Figure 9: Optimal tour for 225 city set taken from TSPLIB (left). It's length is 3916. Tour generated by SOM 2opt hybrid
(right). It's length is 4130, which is 5.19% worse than optimum.

Figure 10: Optimal tour for 2392 city set taken from TSPLIB (left). It's length is 378037. Tour generated by SOM 2opt
hybrid (right). It's length is 411442, which is 8.12% worse than optimum.

k=0.70805
0.52229

n


1.31572

n
−

3.07474

nn

EIL101 and RAND100. For other sets EA was run only
once. Optimum solutions for instances taken from
TSPLIB were already there and optimum solutions for
random instances are calculated from empirical relation
described above. All computations were performed on
AMD Athlon 64-bit 3500+ processor. However, the
program was built using 32-bit compiler, so it did not use
full computational power of this machine.

Experiments show that EA finds better solutions for
instances with up to 101 cities. Both Average and Best
Results are better than SOM's. For city sets with 50 or less
cities EA finds optimum in almost every execution.
Results for 225 cities are comparable for both algorithms,
however for larger amount of cities (442 and more) SOM
wins the competition. The more cities the instance has, the
bigger the difference between both algorithms. With more
cities, search space increases significantly and EA needs
bigger population size. For TSP225 with population size
1000 EA's result was 4044, but when population size was
expanded to 3000 a tour with length 3949 was found -
much better than SOM's solution. This underlines the fact
that when EA is used one can always expand population
size so the algorithm has greater chance of achieving good
result. Unfortunately, the algorithm is much slower then.

It is interesting to compare SOM algorithm to other
non-evolutionary approach. One of the best TSP
algorithms, which is also extremely fast, is the Lin-
Kerninghan algorithm. Results for this algorithm have
been taken from [4]. The algorithm was run 10 times on
each city set. Average results and average times were
taken from are shown in Table 1. A Pentium Pro 180 Mhz
was used, so it is rather hard to compare times from Table
1 and times for SOM from Table 2 (an AMD 3500+
processor was used). Anyway, Lin-Kerninghan is faster
than SOM even on a many times slower machine. There is
not a big difference in time for a small 51-city instance
(0.012 seconds for Lin-Kerninghan and 0.068 seconds for
SOM). On the other hand for 2392-city instance Lin-
Kerninghan needed just 0.719 seconds and SOM almost
13 seconds. This is because SOM is optimized by 2opt,
which is the slowest part of this algorithm. When average
results are compared it can be easily seen that Lin-
Kerninghan wins in all cases. The more cities there is, the
bigger the difference between both algorithms.

SOM was also used to generates initial population for
EA. Such initialization takes only a fraction of time

needed for EA to finish, because SOM is a fast algorithm.
In this case EA tended to converge much faster and finally
it did not improve much best solution generated by SOM
alone. It seems that all initial solutions were very similar
to each other, thus population diversity was low, so EA
lost exploration abilities.

Table 1: Results for the Lin-Kerninghan algorithm

6 Conclusions

It seems that SOM-2opt hybrid is not a very powerful
algorithm for the TSP. It has been outperformed by both:
EA and Lin-Kerninghan algorithms. It's speed might be
impressive, but it still is slower than Lin-Kerninghan.

There are a couple of things that can be optimized.
Here are some of them:
• an optimal network parameter settings should be found

(η , Δη, Δλ, number of iterations)
• experiments with other self-organizing networks

should be performed, Gaussian neighborhood and
“conscience mechanism” may be applied. Conscience
mechanism can improve TSP solutions generated by
neural networks, as reported in [6].

• 2opt algorithm is not very sophisticated. Some other
optimization method may be better.

The are many algorithms that solve permutation
problems. Evolutionary Algorithms have many different
operators that work with permutations. EER is one of the
best operators for the TSP [5]. However, it was proved
that other permutation operators, which are worse for the
TSP than EER, are actually better for other permutation
problems (like warehouse/shipping scheduling) [5].
Therefore, it might be possible that SOM 2opt hybrid
might work better for other permutation problems than for
the TSP.

Table 2: SOM and Evolutionary Algorithm comparison

Self-Organizing Map Evolutionary Algorithm

Instances Optimum Ave. Result Best Result Ave. Time Ave. Result Best Result Ave. Time

EIL51 426 444 431 0.068 428.2 426 10

EIL101 629 662 646 0.127 653.3 639 75

TSP225 3916 4193 4106 0.302 ---- 4044 871

PCB442 50778 56634 55138 0.703 ---- 55657 10395

PR1002 259045 278481 274036 2.425 ---- 286908 25639

PR2392 378037 418739 411442 12.965 ---- ---- ----

RAND100 3851,81 4051 3883 0.131 3931.4 3822 69.6

RAND500 8203,73 8888 8697 0.824 ---- 9261 11145

RAND1000 11475,66 12483 12343 2.311 ---- 12858 56456

Lin-Kerninghan

Instances Optimum Ave. Result Ave. Time

EIL51 426 427.4 0.012

EIL101 629 640 0.039

PCB442 50778 51776.5 0.137

PR2392 378037 389413 0.719

Acknowledgements
I am grateful to Prof. Zbigniew Michalewicz for
influencing and helping me to write this paper.

Bibliography

1. Kohonen T. (2001), Self-Organizing Maps, Springer,
Berlin

2. Michalewicz Z. (1996), Genetic Algorithms + Data
Structures = Evolution Programs, Springer – Verlag

3. Arbib M. (1998), The Handbook of Brain Theory and
Neural Networks, The MIT Press

4. Tao G., Michalewicz Z., Inver-over Operator for the
TSP

5. Starkweather T., McDaniel S., Whitley C., Mathias
K., Whitley D., (1991), A Comparison of Genetic
Sequencing Operators

6. Burke Laura I., (1993), Neural Methods for the
Traveling Salesman Problem: Insights From
Operations Research

7. Xu W., Tsai W. T. (1990), Effective Neural
Algorithm for the Traveling Salesman Problem

8. Johnson, D.S., McGeoch, L.A., and Rothberg, E.E.,
Asymptotic experimental analysis for the Held-Karp
traveling salesman bound

9. Lin S., Kernighan B. W., (1971), An effective
Heuristic for the Traveling Salesman Problem

10. Garey M., Johnson D., (1971), Computers and
Intractability, W.H. Freeman, San Francisco

11. Korte B., (1988), Applications of Combinatorial
Optimization

12. Reinelt G., (1995), TSPLIB 95 documentation,
University of Heidelberg

View publication statsView publication stats

