NEUROCOMPUTING

S VIE Neurocomputing 21 (1998) 1-6

The self-organizing map

Teuvo Kohonen
Helsinki University of Technology, Neural Networks Research Centre, P.O. Box 2200, FIN-02015 HUT, Finland

Accepted 26 May 1998

Abstract

An overview of the self-organizing map algorithm, on which the papers in this issue are based,
is presented in this article. © 1998 Elsevier Science B.V. All rights reserved.

Keywords: Self-organizing map; Learning vector quantization

1. Introduction

The self-organizing map (SOM) is a new, effective software tool for the visualization
of high-dimensional data. It implements an orderly mapping of a high-dimensional
distribution onto a regular low-dimensional grid. Thereby it is able to convert
complex, nonlinear statistical relationships between high-dimensional data items into
simple geometric relationships on a low-dimensional display. As it compresses in-
formation while preserving the most important topological and metric relationships
of the primary data items on the display, it may also be thought to produce some kind
of abstractions. These two aspects, visualization and abstraction, can be utilized in
a number of ways in complex tasks such as process analysis, machine perception,
control, and communication.

The SOM usually consists of a two-dimensional regular grid of nodes. A model of
some observation is associated with each node (cf. Fig. 1).

The SOM algorithm computes the models so that they optimally describe the
domain of (discrete or continuously distributed) observations.

The models are automatically organized into a meaningful two-dimensional order
in which similar models are closer to each other in the grid than the more dissimilar
ones. In this sense the SOM is a similarity graph, and a clustering diagram, too. Its
computation is a nonparametric, recursive regression process.

0925-2312/98/$ — see front matter © 1998 Elsevier Science B.V. All rights reserved.
PII S0925-2312(98)00030-7

2 T. Kohonen/Neurocomputing 21 (1998) 1-6

%%%%%%%%
%%%%%%%%
DEPRORE

Fig. 1. In this exemplary application, each processing element in the hexagonal grid holds a model of
a short-time spectrum of natural speech (Finnish). Note that neighboring models are mutually similar.

2. The incremental-learning SOM algorithm

Regression of an ordered set of model vectors m; € R" into the space of observation
vectors x € R” is often made by the following process:

mi(t + 1) = mi(t) + hew x(t) — m?), (1)

where t is the index of the regression step, and the regression is performed recursively
for each presentation of a sample of x, denoted x(¢). The scalar multiplier h,, ; is called
the neighborhood function, and it is like a smoothing or blurring kernel over the grid.
Its first subscript ¢ = c(x) is defined by the condition

Vi, (1) — m (o) < [x(£) — mt)], (2)

that is, m.(t) is the model (called the “winner”) that matches best with x(t). The
comparison metric is usually selected as Euclidean; for other metrics, the forms of
Egs. (1) and (2) will change accordingly. If the samples x(t) are stochastic and have
a continuous density function, the probability for having multiple minima in Eq. (2) is
zero. With discrete-valued variables, multiple minima may occur; in such cases one of
them should be selected at random for the winner.

The neighborhood function is often taken to be the Gaussian

L 2
hans = otenp — 7 ®

where 0 < oft) < 1 is the learning-rate factor, which decreases monotonically with the
regression steps, r;€ R* and r. e R? are the vectorial locations on the display grid, and
a(t) corresponds to the width of the neighborhood function, which also decreases
monotonically with the regression steps.

T. Kohonen/Neurocomputing 21 (1998) 1-6 3

A simpler definition of h,, ; is the following: h., ; = a(t) if ||r; — r.|| is smaller than
a given radius from node ¢ (whereupon this radius is a monotonically decreasing
function of the regression steps, too), but otherwise h,,; = 0. In this case we shall call
the set of nodes that lie within the given radius the neighborhood set N..

Due to the many stages in the development of the SOM method and its variations,
there is often useless historical ballast in the computations.

For instance, an old ineffective principle is random initialization of the model
vectors m; Random initialization was originally used to show that there exists
a strong self-organizing tendency in the SOM, so that the order can even emerge when
starting from a completely unordered state, but this need not be demonstrated every
time. On the contrary, if the initial values for the model vectors are selected as
a regular array of vectorial values that lic on the subspace spanned by the eigenvectors
corresponding to the two largest principal components of input data, computation of
the SOM can be made faster by orders of magnitude, since (i) the SOM is then
already approximately organized in the beginning, (ii) one can start with a narrower
neighborhood function and smaller learning-rate factor.

Many computational aspects like this and the selection of proper parameter
values have been discussed in the software package SOM_PAK [4], as well as the
book [3].

3. The batch version of the SOM

Another remark concerns faster algorithms. The incremental regression process
defined by Egs. (1) and (2) can often be replaced by the following batch computation
version which is significantly faster and does not require specification of any learning-
rate factor ofz).

Assuming that the convergence to some ordered state is true, we require that the
expectation values of m(t + 1) and m(t) for t > co must be equal, even if h.(t) were
then selected nonzero. In other words, in the stationary state we must have

Vi, Et{hc(x),i(x - m:k)} =0. 4

In the special case where we have a finite number (batch) of the x(t) with respect to
which Eq. (4) has to be solved for m¥, and h,,, ; represents the kernels used during the
last phases of the learning process, we can write Eq. (4) as

¥ — Y ihe.i x(1) .

; Zz hew).i

This, however, is not yet an explicit solution for m{, because the subscript c(x) on the
right-hand side still depends on x(t) and all the m¥. The way of writing Eq. (5),
however, allows us to apply the contractive mapping method known from the theory of
nonlinear equations: starting with even coarse approximations for the m}¥, Eq. (2) is
first utilized to find the indices c(x) for all the x(¢). On the basis of the approximate

(5)

4 T. Kohonen/Neurocomputing 21 (1998) 1-6

hew.: values, the improved approximations for the m¥ are computed from Eq. (5),
which are then applied to Eq. (2), whereafter the computed c(x) are substituted to
Eq. (5), and so on. The optimal solutions mj are usually obtained in a few iteration
cycles, after the discrete-valued indices c(x) have settled down and are no longer
changed in further iterations. This procedure is called the Batch Map principle.

An even simpler Batch Map principle is obtained if A, ; is defined in terms of the
neighborhood set N,.. Further, we need the concept of the Voronoi set. It means
a domain V; in the x space, or actually the set of those samples x(¢) that lie closest to
m. Let us recall that we defined N; as the set of nodes that lie up to a certain radius
from node i in the array. The union of Voronoi sets V; corresponding to the nodes in
N; shall be denoted by U;. Then Eq. (5) can be written as

m = Zv(t)eUix(t)’ (©6)
n(U;)
where n(U;) means the number of samples x(¢) that belong to U,.
Note again that the U; depends on the m}, and therefore Eq. (6) must be solved
iteratively. The procedure can be described as the following steps:

1. Initialize the values of the m¥ in some proper way. (Even random values for the
m will usually do.)

2. Input all the x(t), one at a time, and list each of them under the model m that is
closest to x(t) according to Eq. (2).

3. Let U; denote the union of the above lists at model m¥ and its neighbors that
constitute the neighborhood N;. Compute the means of the vectors x(¢) in each U,,
and replace the old values of m¥ by the respective means.

4. Repeat from 2 a few times until the solutions can be regarded as steady.

A further acceleration of computation results if one notes that for the different
nodes i, the same addends occur a great number of times. Therefore, it is advisable to
first compute the mean x; of the x(t) in each Voronoi set V; and then weight it by the
number n; of samples in V; and the neighborhood function. Now, we obtain

Zjnh X
mf Sy (7)

where the sum over j is taken for all units of the SOM. For the case in which
neighborhood sets N; are used,

mp = L)
ZjeN n;

A convergence and ordering proof of the Batch Map has been presented in [1].

There is a Matlab SOM Toolbox program package available on the internet at the
address http://www.cis.hut.fi/projects/somtoolbox/, which makes use of the Batch
Map method.

T. Kohonen/Neurocomputing 21 (1998) 1-6 5
4. Learning vector quantization (LVQ)

If each of the sample vectors x(¢) is known to belong to some predefined class, and
the model vectors m(t) are labeled by symbols corresponding to the predefined classes
too, then a supervised-learning algorithm can be used to fine tune the model vectors
[2]. The basic LVQ1 algorithm can be written in a compressed form as

mi(t + 1) = m(t) + o(t)s(t)0c[x(1) — mi(t)], ©)
where s(t) = + 1 if x and m_ belong to the same class,
but s(t) = — 1 ifx and m, belong to different classes.

Here o(t) is the scalar-valued learning-rate factor, 0 < o(t) < 1, and d,; is the Kronecker
delta (= 1for ¢ =i, =0 for ¢ # i); usually () is initially of the order of a couple of
percent and decreases monotonically with time. The index ¢ labels the winner
according to Eq. (2). Notice that the neighborhood set around the winner now
consists of the winner itself only.

4.1. Batch-LVQI

The LVQI1 algorithm, like the SOM, can be expressed as a batch version. In
a similar way as with the Batch Map (SOM) algorithm, the equilibrium condition for
the LVQI1 is expressed as

Vi, E/fs().x —m¥)} = 0. (10)

The computing steps of the so-called Batch-LV Q1 algorithm (in which at steps 2
and 3, the class labels of the nodes are redefined dynamically) can then be expressed, in
analogy with the Batch Map, as follows:

1. For the initial reference vectors take, for instance, those values obtained in the
preceding unsupervised SOM process, where the classification of x(¢) was not yet
taken into account.

2. Input the x(t) again, this time listing the x(t) as well as their class labels under each of
the corresponding winner nodes.

3. Determine the labels of the nodes according to the majority of the class labels of the
samples in these lists.

4. Multiply in each partial list all the x(¢) by the corresponding factors s(t) that
indicate whether x(t) and m(t) belong to the same class or not.

5. At each node i, take for the new value of the reference vector the entity

e XSO0
’ dest)
where the summation is taken over the indices ¢ of those samples that were listed

under node i.
6. Repeat from 2 a few times.

(11)

6 T. Kohonen/Neurocomputing 21 (1998) 1-6

Comment 1. For stability reasons it may be necessary to check the sign of) ,s(t'). If
it becomes negative, no updating of this node is made.

Comment 2. Unlike in usual LVQ, the labeling of the nodes was allowed to change
in the iterations. This has sometimes yielded slightly better classification accuracies
than if the labels of the nodes were fixed at first steps. Alternatively, the labeling can be
determined permanently immediately after the SOM process.

5. Further remarks

Finally, it should be taken into account that the purpose of the SOM is usually
visualization of data spaces. For an improved quality (isotropy) of the display it is
then advisable to select the grid of the SOM units as hexagonal; the reason is similar
to when using a hexagonal screen for images, say, in color television.

The above algorithms can be generalized, e.g.,, by defining various generalized
matching criteria.

The following categories of similarity graphs, computed by the SOM, have already
been used in many practical applications:

1. State diagrams for processes and machines,

2. Data mining applications: similarity graphs for
o statistical tables,
o full-text document collections.

A list of 3043 research papers from very different application areas of the SOM and its
variations are presented in [2].

References

[1] Y. Cheng, Convergence and ordering of Kohonen’s batch map, Neural Comput. 9 (1997) 1667-1676.

[2] J. Kangas, S. Kaski, 3043 works that have been based on the self-organizing map (SOM) method
developed by Kohonen, Report A50, Helsinki University of Technology, Laboratory of Computer and
Information Science, Espoo, Finland, 1998. Also available in the Internet at the address
http://www.cis.hut.fi/nnrc/refs/references.ps.

[3] T. Kohonen, Self-Organizing Maps, Series in Information Sciences, 2nd ed., vol. 30, Springer, Heidel-
berg, 1997.

[4] T. Kohonen, J. Hynninen, J. Kangas, J. Laaksonen, SOM_PAK: the self-organizing map program
package, Report A31, Helsinki University of Technology, Laboratory of Computer and Information
Science, Espoo, Finland, 1996. Also available in the Internet at the address http://
www.cis.hut.fi/nnrc/nnre-programs.html.

