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Abstract - This work shows how a modified Kohonen

Self-Organizing  Map  with  one  dimensional
neighborhood  is  used  to  approach  the  symmetrical

Traveling Salesperson Problem. Solution generated by
the  Kohonen  network  is  improved  by  the  2opt

algorithm.  The  paper  describes  briefly  self-
organization in neural networks, 2opt algorithm and

modifications applied to Self-Organizing Map. Finally,
the  algorithm  is  compared  with  Lin-Kerninghan

algorithm and Evolutionary Algorithm with Enhanced
Edge  Recombination  operator  and  self-adapting

mutation rate.

1 Introduction

The idea of the Traveling Salesperson Problem (TSP) is to
visit a set of n cities once and once only and return to the
starting city. It might look simple, but it was proved that
the TSP  is  NP-hard  problem [10].  The  search space is
huge: n!. Thus, it is not possible to check all solutions for
city  sets  with  many  thousands  of  cities  and  some
engineering  problems  like  VLSI  designing  need  1.2
million cities [11]. A fast and effective heuristic method is
needed.  The  author  intended  to  build  a  neural  based
algorithm and compare it  with two well know and very
effective  heuristic  methods:  Lin-Kerninghan  and
Evolutionary  Algorithm  with  Enhanced  Edge
Recombination operator.

2 Kohonen Self-Organizing Map basics

In 1975 Teuvo Kohonen introduced new type of neural
network that uses competitive, unsupervised learning[1].
This approach is based on WTA (Winner Takes All) and
WTM (Winner Takes Most) algorithms.  Therefore,  these
algorithms will be explained here briefly. The most basic
competitive  learning  algorithm  is  WTA.  When  input
vector (a pattern) is presented, a distance to each neuron's
synaptic weights is calculated. The neuron whose weights
are most correlated to current input vector is the winner.
Correlation is equal to scalar product of input vector and
considered  synaptic  weights.  Only  the  winning  neuron

modifies  it's  synaptic  weights  to  the point  presented  by
input pattern.  Synaptic  weights of other  neurons do not
change.  The  learning  process  can  be  described  by  the
following equation:

where i∈[0..numer of neurons ] , W i represents

all synaptic weights of the winning neuron,  η is learning

rate and x stands for current input vector. This simple
algorithm can be extended. The most common extension is
giving more chance of winning to neurons that are rarely
activated.  However,  WTM  strategy  has  better
convergence  than  WTA.  The  difference  between  those
two  algorithms is  that  many neurons  in  WTM  strategy
adapt their synaptic weights in one learning iteration. In
this case not only the winner, but also  it's neighborhood
adapts.  The  further the neighboring neuron is  from the
winner, the smaller the modification which is applied to its
weights. This adaptation process can be described as:

for  all  neurons  i that  belong  to  winner's  neighborhood.
W i stands  for  synaptic  weights  of  neuron  i and  x is

current input vector. η stands for learning rate and N(i, x)
is  a  function  that  defines  neighborhood.  Classical  Self
Organizing Map (SOM) can be created when function N(i,
x) is defined as: 

where d(i, w) is Euclidean distance between winning and
i-th neuron.  λ is neighborhood radius. To train Kohonen
SOM  Euclidean  distance  between  input  vector  and  all
neural weights has to be calculated. Neuron that has the
shortest distance to input vector (the winner) is chosen and
it's weights are slightly modified to direction represented
by input vector. Then neighboring neurons are taken and
their weights are modified in the same direction.  η and λ
are  multiplied  with Δη and Δλ respectively during each
learning iteration. These two last parameters  are  always
less  than one. Therefore,  η and  λ  become smaller during
learning process. At the beginning SOM tries to organize
itself  globally  and  with following iterations  it  performs

N i , x={1 for d i , w 
0 for others }

W i W iN i , xx−W i

W i W ix−W i



more and more local organization, because learning rate
and neighborhood get smaller.

Figure 1: Kohonen SOM with two dimensional
neighborhood and input vector.

Kohonen SOM is  shown in  Figure  1.  It  maps  input
vectors of any dimension onto map with one, two or more
dimensions.  Input  patterns,  which  are  similar  to  one
another in the input space are put close to one another in
the map. The input vector is passed to every neuron. A
Kohonen SOM is made of a vector  or  matrix of output
neurons.  If vector representation is chosen each neuron
has two neighbors (on the left and on the right). It is called
one-dimensional neighborhood:

Figure 2: One dimensional neighborhood of Kohonen
SOM

If  two-dimensional  matrix  representation  is  used,
neurons  have  4  neighbors  (left,  right,  top  and  bottom).
This is classical two dimensional neighborhood (figure 3).
Neighborhood  can  be  expanded.  Instead  of  taking  four
nearest  neurons,  8  or  more can be taken (figure 4).  As
many dimensions can be used as needed: 1D, 2D, 3D or
more. However, 2D neighborhood is most common. 

Figure 3: Classical two dimensional neighborhood

Figure 4: Extended two dimensional neighborhood of
Kohonen SOM

Basic SOM algorithm can be described as follows:

procedure train_SOM
begin
      randomize weights for all neurons

      for (i = 1 to iteration_number) do

      begin

           take one random input pattern
           find the winning neuron
           find neighbors of the winner
           modify synaptic weights of these neurons
           reduce the η  and  λ 

      end

end

3 Experiments on self-organization

Most interesting results of self-organization can be
achieved in networks that have two dimensional input
vector and two-dimensional neighborhood. In this case
input to network consists of two values: x and y, which
represent a point in two-dimensional space. This kind of
network can map two-dimensional objects in such a way
that a mesh which covers this object is created. This
process is illustrated in Figure 5. Each example consists of
six squares. First one shows object that should be learned.
Second square illustrates network just after randomization

Figure 5: Self-organization of a network with two dimensional neighborhood.



of all neural weights.  Following squares describe learning
process. Please note that each neuron (a circle) represents
a point whose coordinates are equal to neuron's weights. 
These figures illustrate that Kohonen neural network is a
powerful self-organizing and clustering tool. However, it
is also possible to create a network with one dimensional
neighborhood  and  two  dimensional  input.  Learning
process of this is shown in Figure 6.

It can be observed that this network tries to organize
it's  neurons in  such a way, that  a  relatively short  route
between all neurons emerges. These experiments were a
stimulus  to  build  a  system  based  on  Kohonen  one-
dimensional SOM that would solve TSP problems.

4 SOM based TSP solver

To solve TSP problem a one dimensional network must be
created. Number of neurons must be equal to the number
of  cities.  If  the  weights of  a  neuron are  equal  to  some
city's coordinates this neuron represents that city. In other
words a neuron and a city are assigned to each other and
there is a 1-to-1 mapping between the set of cities and the
set of neurons. All neurons are organized in a vector. This
vector represents sequence of cities that must be visited.
However, some modifications need to be done before the
SOM is able to fully solve this problem. This is because
the real-valued neural weights may never equal exactly the
coordinates  of  the  cities. To  solve  the  problem  an
algorithm that  would  modify  Kohonen  solution,  to  one
that  is  valid,  has  been  created.  Positions  of  cities  and
positions of neurons may not equal.  However,  adequate
neural  weights  and  cities'  coordinates  are  very close  to
each other.  An algorithm that modifies neural weights so
they equal to cities' coordinates has been applied. These
weights need to be modified in such a way to restore the
1-to-1 mapping assumed on the beginning. If neuron A is

assigned to a city B it means that weights of neuron A are
equal to coordinates of city B.

Scheme of the repair algorithm:

procedure repair

begin
     Iterate through all neurons

          begin

               nearest_city = find the nearest city to current
neuron

if (nearest_city is not assigned to any neuron)
                    assign nearest_city and current neuron

else

     delete this neuron

          end

     Iterate through all cities

     begin

          if (current city is not assigned to any neuron)

               begin

     create a new_neuron and assign it to current
city

     nearest_neuron = find the nearest neuron to
current city
                    insert new_neuron before or after
nearest_neuron, depending on which tour is locally 

shorter

end

     end

end

After applying this algorithm a good and fast solution
is obtained, however it is not locally optimal. Therefore, it
needs to be optimized using well know 2opt algorithm. In
this case 2opt works fast even for large amount of cities,
because  current  solution  is  already  good.  Usually  2opt
does  not change the solution a lot  (Figure 8).  The 2opt
algorithm is based on one simple rule. It selects a part of
the tour, reverses it, and inserts back in the cycle. If the

Figure 6: Self-organization of a network with one dimensional neighborhood.



new tour  is  shorter  than  the  original  cycle,  then  it  is
replaced. The algorithm stops when no improvement can
be done. For example if there is a cycle (A, B, C, D, E, F)
and a path (B, C, D)  is reversed, then the new cycle is:
(A, D, C, B, E, F). After 2opt optimization the solution is
locally optimal.

Figure 7: 2opt optimization. If there is a cycle (A, B, C,
D, E, F) and a path (B, C, D)  is reversed, then the new
cycle is: (A, D, C, B, E, F)

Optimal Kohonen SOM training parameters should be
chosen  adequately  to  number  of  cities  to  achieve  best
results.  It  was  found  empirically  that  good  training
parameters are:

• for 100 cities:
η = 0.6
Δη = 0.9997
Δλ = 0.999

• for 500 cities:
η = 0.7
Δη = 0.999985
Δλ = 0.9994

• for 1000 cities:
η = 0.9
Δη = 0.99992
Δλ = 0.9996

In every case the number of iterations was set to 25000.

5 The Experiment

Two types of tests were administered:
• Using  city  sets  taken  from  TSPLIB.  Some  optimal

solutions are already there.
• Using randomly chosen cities.

TSPLIB city sets are rather hard to solve. The reason
for  this  is  that  in  many  cases  cities  are  not  chosen
randomly (Figures 9, 10). Often larger city sets consist of
smaller patterns.  City set shown in Figure 10 consist of
two  different  patterns,  but  each  of  them is  used  eight
times. Therefore, the optimal tour is identical in each one
of these smaller patterns (Figure 10, left).  SOM tries to
figure out a unique tour in each smaller pattern (Figure 10,
right).

Testing using randomly chosen cities is more objective.
It is  based on the Held-Karp Traveling Salesman bound
[8]. An empirical relation for expected tour length is used:

L=k n⋅R
where L is expected tour length, n is a number of cities, R
is an area of square box on which cities are placed and k is
an empirical constant. For n100 it is:

Figure 8: SOM solution without 2opt optimization (left). There are two local loops on the left. First and last neuron can be
seen in the middle. They are not connected it the picture, but distance between them is also computed. The same solution
improved by 2opt (right). Loops on the left have been erased. Additional changes can be observed.



Three  random city sets were used in this experiment
(100, 500, 1000 cities). Square box edge length was 500.

All statistics for SOM were generated after 50 runs on
each city set. When amount of iterations was adjusted to
100  average  results  did  not  change  a  lot.  SOM  can
generate  a  tour  in  relatively short  time.  225  city  set  is
solved during just 300 ms, and 1000 city set in less then
2.5 second (using machine described later). Average tour
lengths for city sets up to 2000 cities are around 5 to 6
percent worse than optimum. SOM approach can generate
solutions that are almost always less that 10% worse from
the optimal tour. However, in most cases the difference is
just  a  few  percent. SOM   has  been  compared  with
evolutionary  algorithm (EA).  EA  used  Enhanced  Edge

Recombination  (EER)  operator[2,  5],  Steady-State
survivor  selection  (where  always  the  worst  solution  is
replaced),  Tournament  parent  selection  with tournament
size depending on number of cities and population size.
Scramble  mutation  was  used.  Optimal  mutation  rate
depends  on  amount  of  cities  and  state  of  evolution.
Therefore,  self-adapting  mutation  rate  has  been  used.
Every  genotype  has  it's own  mutation  rate,  which  is
modified in a similar way as in Evolution Strategies. This
strategy adapts  mutation  rate   to  number  of  cities  and
evolution state automatically, so it's not needed to check
manually which parameters are optimal for each city set.
Evolution  stops  when population  converges.  Population
size was set to 1000 (as in [5]). With smaller populations
EA did  not  work that  well.  When EA stopped  it's  best
solution  was  optimized  by  2opt  algorithm.  Results  for
both SOM and EA are shown in Table 2. All statistics for
SOM were generated after 50 runs on each city set. For
EA there were 10 runs of the algorithm for sets: EIL51,

Figure 9: Optimal tour for 225 city set taken from TSPLIB (left). It's length is 3916. Tour generated by SOM 2opt hybrid
(right). It's length is 4130, which is 5.19% worse than optimum. 

Figure 10: Optimal tour for 2392 city set taken from TSPLIB (left). It's length is 378037. Tour generated by SOM 2opt
hybrid (right). It's length is 411442, which is 8.12% worse than optimum.
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EIL101 and RAND100. For other sets EA was run only
once.  Optimum  solutions  for  instances  taken  from
TSPLIB  were  already  there  and  optimum solutions  for
random instances  are  calculated  from empirical  relation
described  above.  All  computations  were  performed  on
AMD  Athlon  64-bit  3500+  processor.  However,  the
program was built using 32-bit compiler, so it did not use
full computational power of this machine.

Experiments  show that  EA finds  better  solutions  for
instances with up to  101 cities.  Both Average and Best
Results are better than SOM's. For city sets with 50 or less
cities  EA  finds  optimum  in  almost  every  execution.
Results for 225 cities are comparable for both algorithms,
however for larger amount of cities (442 and more) SOM
wins the competition. The more cities the instance has, the
bigger the difference between both algorithms. With more
cities, search space increases significantly and EA needs
bigger population size. For TSP225 with population size
1000 EA's result was 4044, but when population size was
expanded to 3000 a tour  with length 3949 was found -
much better than SOM's solution. This underlines the fact
that when EA is used one can always expand population
size so the algorithm has greater chance of achieving good
result. Unfortunately, the algorithm is much slower then.

It  is  interesting to  compare  SOM algorithm to other
non-evolutionary  approach.  One  of  the  best  TSP
algorithms,  which  is  also  extremely  fast,  is  the  Lin-
Kerninghan  algorithm.  Results  for  this  algorithm  have
been taken from [4]. The algorithm was run 10 times on
each  city  set.  Average  results  and  average  times  were
taken from are shown in Table 1. A Pentium Pro 180 Mhz
was used, so it is rather hard to compare times from Table
1  and  times  for  SOM  from Table  2  (an  AMD  3500+
processor  was used).  Anyway, Lin-Kerninghan  is  faster
than SOM even on a many times slower machine. There is
not a big difference in time for a small 51-city instance
(0.012 seconds for Lin-Kerninghan and 0.068 seconds for
SOM).  On  the  other  hand  for  2392-city  instance  Lin-
Kerninghan needed just 0.719 seconds and SOM almost
13 seconds. This is because SOM is optimized by 2opt,
which is the slowest part of this algorithm. When average
results  are  compared  it  can  be  easily  seen  that  Lin-
Kerninghan wins in all cases. The more cities there is, the
bigger the difference between both algorithms.

SOM was also used to generates initial population for
EA.  Such  initialization  takes  only  a  fraction  of  time

needed for EA to finish, because SOM is a fast algorithm.
In this case EA tended to converge much faster and finally
it did not improve much best solution generated by SOM
alone. It seems that all initial solutions were very similar
to each other,  thus population diversity was low, so EA
lost exploration abilities.

Table 1: Results for the Lin-Kerninghan algorithm

6 Conclusions

It  seems that  SOM-2opt  hybrid  is  not  a  very powerful
algorithm for the TSP. It has been outperformed by both:
EA and Lin-Kerninghan algorithms. It's speed might be
impressive, but it still is slower than Lin-Kerninghan. 

There  are  a  couple  of  things  that  can be  optimized.
Here are some of them:
• an optimal network parameter settings should be found

(  η , Δη, Δλ, number of iterations)
• experiments  with  other  self-organizing  networks

should  be  performed,  Gaussian  neighborhood  and
“conscience mechanism” may be applied. Conscience
mechanism can improve TSP solutions generated by
neural networks, as reported in [6].

• 2opt  algorithm is not very sophisticated.  Some other
optimization method may be better.

The  are  many  algorithms  that  solve  permutation
problems.  Evolutionary Algorithms have many different
operators that work with permutations. EER is one of the
best operators for the TSP [5].  However,  it  was proved
that other permutation operators, which are worse for the
TSP than EER, are actually better for other permutation
problems  (like  warehouse/shipping  scheduling)  [5].
Therefore,  it  might  be  possible  that  SOM  2opt  hybrid
might work better for other permutation problems than for
the TSP.

Table 2: SOM and Evolutionary Algorithm comparison

Self-Organizing Map Evolutionary Algorithm

Instances Optimum Ave. Result Best Result Ave. Time Ave. Result Best Result Ave. Time

EIL51 426 444 431 0.068 428.2 426 10

EIL101 629 662 646 0.127 653.3 639 75

TSP225 3916 4193 4106 0.302 ---- 4044 871

PCB442 50778 56634 55138 0.703 ---- 55657 10395

PR1002 259045 278481 274036 2.425 ---- 286908 25639

PR2392 378037 418739 411442 12.965 ---- ---- ----

RAND100 3851,81 4051 3883 0.131 3931.4 3822 69.6

RAND500 8203,73 8888 8697 0.824 ---- 9261 11145

RAND1000 11475,66 12483 12343 2.311 ---- 12858 56456

Lin-Kerninghan

Instances Optimum Ave. Result Ave. Time

EIL51 426 427.4 0.012

EIL101 629 640 0.039

PCB442 50778 51776.5 0.137

PR2392 378037 389413 0.719
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