
A SOA-based environment supporting
collaborative experiments in e-Science

Andrea Bosin, Nicoletta Dessì, Bairappan Madusudhanan, Barbara Pes
Dipartimento di Matematica e Informatica,

Università degli Studi di Cagliari,
Via Ospedale 72, 09124 Cagliari, Italy

Pre-print submitted to International Journal of Web Portals (IGI Global)

ABSTRACT
There are many sophisticated environments that allow creating and managing scientific
workflows, whereas the workflow itself is provided as a service. Scientific Grids handle large
amounts of data and deal with sharing resources, but the implementation of service-based
applications that use scientific infrastructures still remains a challenging task, due to the
heterogeneity of Grid middleware and different programming models. This paper proposes to
support scientists with an e-Science environment providing functionality in a simplified way,
especially for communities whose IT skills are not so smart not only to consider the Grid a
source of computational power, but also an information infrastructure. To promote both
integration among components and user interaction and leverage existing work in both business
and scientific environments, the paper outlines a SOA-based scientific environment where a
scientific experiment is modeled through an abstract workflow defining the functional model of
the experiment. In turn, the workflow tasks are mapped to the corresponding scientific services
by a workflow engine, the key being to separate logical aspects from implementation issues.
Services depend on the type of experiment and can be re-used, or wrapped, or moved straight
into a new workflow. Infrastructural services discover suitable resources that match user
requirements and schedule workflow tasks to the selected resources. Further, they monitor the
execution of each single task and aggregate the results of the execution. The proposed approach
provides a simple-to-use and standardized way for the deployment of scientific workflows in a
distributed scientific environment, including the Grid.

Keywords: E-Science, Grid, Workflows, Service Oriented Architectures, Web Services

INTRODUCTION
Collaboration in scientific experiments, obtained by sharing data, tools, and expertise towards a
common scientific goal, is becoming more and more appealing for e-Science, thanks to the
availability of Information and Communication Technology (ICT) methods and tools. In
particular, the Service Oriented Architecture (SOA) paradigm is attractive since it can effectively
support distributed cooperation. However, the heterogeneity and dynamicity of services and of
their underlying infrastructures make the aspects of creating valuable complex service
environments an emerging research issue in the scientific community.

Advances in computing technologies have enabled scientists to validate new research
practices in many scientific fields and to evolve from individual activities to work conducted in
teams, exploring research issues at time and space scales both greater and finer than ever before.
This new research context is becoming more and more complex in terms of the number of
collaborating researchers, the diversity of computing environments supporting collaborative
efforts among each participant in data/computation intensive applications, the number of
emerging powerful and effective data analysis tools enabled by new technologies, the
distribution of data and computing resources and the consequent orchestration of the data
analysis tools across various platforms.

Indeed, the computing resources available to a scientific experiment, the network capacity,
connectivity and costs may all change over time and space since some components are added,
removed or temporary unavailable. Similarly, the scientist may move from one location to
another, joining and leaving groups of researchers and frequently interacting with computers in
changing experimental situations. In short, the research environment we consider is constantly in
evolution and scientific collaboration keeps on increasing the aggregation and sharing of
heterogeneous and geographically dispersed resources. In practice, this means that computation
does not occur at a single location in a single context, but rather spans a multitude of situations
and locations covering a significant number of heterogeneous hardware or software components.

E-Science is the term usually applied to the use of advanced computing technologies to
support scientists. In short we can say “e-Science is about global collaboration in key areas of
science, and the next generation of infrastructure that will enable it” (De Roure, 2004). The
above definition is still to come at the structural level: technical problems limit the usability of
the e-infrastructure presently in production, i.e. the Grid, whose technology is still far from
allowing a true interoperability of scientific applications and/or computational experiments. As a
consequence, the level of detail needed for the successful deployment of scientific applications
on the Grid still remains very high. Moreover, scientists want to get work done and they do not
want to deal with the complexity of building applications that expose details of the underlying e-
infrastructure. They must be able to express their problem by composing application specific
components in an easy-to-use, easy-to-re-use and easy-to-modify form. Their favorite model of
programming is to compose a workflow by means of a graphical interface via “drag-and-drop”,
and they loathe writing “programs” in XML. However, the visual programming model must be
sufficiently powerful to address a wide range of conditions, exceptions, iteration and adaptive
control.

The paper aims at defining the needs and the building blocks for the next step in the advance
of e-Science environments. Grids and distributed systems, augmented with various management
capabilities, are considered essential aspects of the e-Science environment. To promote both
integration among components and user interaction, the paper proposes to extend the use of
solutions developed for business environments and in particular the adoption of a Service
Oriented Architecture. An architectural model for the deployment of scientific workflows is
presented as well as a case study to validate the effectiveness of the proposed approach.

The paper is structured as follows. Section II reviews some related works. Section III presents
an overview of the infrastructures supporting scientific collaboration. Section IV gives a short
overview of the scientific workflows requirements. Section V presents the proposed architectural
approach while Section VI gives some implementation details for the execution of BPEL-based
scientific workflows on heterogeneous platforms, including the Grid. Section VII shows a case

study in the field of data mining in which Web Services are combined to carry out a data mining
process. Finally, conclusions are drawn in Section VIII.

RELATED WORK
E-Science workflow tools have been built to address a wide spectrum of applications, ranging
from basic tools that are designed to handle tasks such as simple data analysis and visualization
to complex workflow systems that are designed to run large-scale e-Science applications on
remote Grid resources. These systems need to support multiple concurrent users, deal with
security requirements, and run workflows that may require the use of a sophisticated layer of
services (Fox, 2006). For example, my Experiment (Goble, 2007) is an open repository for items
arising in scientific workflows and experiment plans. That repository has been established
collecting a significant set of scientific workflows, spanning multiple disciplines and multiple
workflow systems, built according to Web 2.0 design principles. As another environment, my
Grid (http://www.mygrid.org.uk) is a suite of tools designed to “help e-Scientists get on with
science and get on with scientists”. The tools support the creation of e-Laboratories and have been
used in diverse domains such as systems biology, social science, music, astronomy, multimedia and
chemistry. The tools and the infrastructure allow the design, editing and execution of workflows
in Taverna (http://www.taverna.org.uk), the sharing of workflows and related data by
myExperiment (http://www.mygrid.org.uk/tools/myexperiment), the cataloguing and annotation of
services in BioCatalogue (http://www.mygrid.org.uk/tools/biocatalogue), the creation of user-
friendly clients such as UTOPIA (http://utopia.cs.manchester.ac.uk). These tools help to form the
basis for the team’s work on e-Labs. (http://www.mygrid.org.uk/tools/e-labs).

McPhillips (2009) identifies desiderata for scientific workflow systems – namely clarity,
predictability, report ability, and reusability. Moreover, ease of composition and editing, the
ability to automatically log and record workflow enactments and the flexibility to incorporate
new tools are all-important features (Fox, 2006). The interoperability aspects of scientific
workflow systems are addressed in Elmroth (2010) that investigates differences in the execution
environments for local workflows and those executing on remote Grid resources. A complete
overview of features and capabilities of scientific workflow systems is presented in Deelman
(2009).

There are a number of widely recognized Grid workflow projects. Many of these began life in
the “desktop” workflow space, but they have evolved over time to address the large-scale e-
Science applications. A Grid-aware framework for the construction of distributed workflows and
their management and execution is provided by systems like Triana (Taylor, 2005), Kepler
(Pennington, 2007), Pegasus (Deelman, 2005), and ASKALON (Fahringer, 2007). Specifically
designed for the life sciences, Taverna (Oinn, 2007) has been the first system to recognize the
importance of data provenance and semantic Grid issues. Based on BPEL (http://www.oasis-
open.org/committees/wsbpel), QoWL (Brandic, 2006) and GPEL (Slominski, 2007) are
significant examples of workflow systems designed for dynamic, adaptive large-scale e-Science
applications.

In particular, Deelman (2009) recognizes BPEL as the de facto standard for Web-Service-
based workflows. The use of BPEL for Grid service orchestration is proposed as foundation in
Leymann (2006) since it fulfils many requirements of the WSRF standard (http://docs.oasis-
open.org/wsrf/wsrf-primer-1.2-primer-cd-02.pdf). The appropriateness of BPEL is also
examined and confirmed in Chao (2004), Dörnemann (2007) and Emmerich (2006). These works
mainly focus on scientific workflows and rely on extending or adapting BPEL, thus creating

dialects. While developed for the business domain, technologies like BPEL are then recognized
suitable to address the requirements of e-Science applications in Akram (2006), supporting the
composition of large computational and data analysis tasks that must execute on remote
supercomputing resources. Bosin (2010) presents an architectural model for the deployment of
scientific workflows using BPEL, while Bosin (2011) discusses the challenges encountered in
the seamless integration of BPEL processes within an e-Science infrastructure.

INFRASTRUCTURES SUPPORTING SCIENTIFIC COLLABORATION
Collaboration is essential for combining approaches, combining skills, and sharing resources and
the concept of scientific experiment is rapidly moving from the idea of a local laboratory activity
towards a computer-based process involving complex data analysis.

Workflow systems provide specialized computing environments for automating this process
allowing scientists to represent experimental stages without the hassle of focusing on
computational resource management. Formally, a workflow is a computer program composed by
a set of tasks that the researcher orchestrates according to her/his experimental methodology
without being aware of the complexity associated with managing and deploying applications.

E-Science workflow systems have been built to address a wide spectrum of applications,
ranging from basic tools that are designed to handle desktop tasks such as simple data analysis
and visualization to complex workflow systems that are designed to run large-scale e-Science
applications on heterogeneous and distributed resources including the Grid. Like in the past, a
typical experimental scenario requires data to undergo several processing stages, launching the
computations and storing the output results, but a workflow system makes it much easier to
automate the process of accessing and using distributed resources.

There is therefore a need for providing functionality in a simplified way, especially for
scientific communities whose IT skills are not so smart not only to consider the Grid a source of
computational power, but also an information infrastructure. Towards these needs, Service-
Oriented Computing (SOC) is an emerging paradigm that may open a completely new way for e-
Science applications. In this paradigm, applications are built by assembling together independent
computational units, called services. A service is a stand-alone component distributed over a
network, and made available through standard interaction mechanisms. An important aspect is
that services are open, in that they are built with little or no knowledge about their operating
environment, their clients, and further services therein invoked. This aspect enables researchers
to vision a scientific workflow as composed by granular services allowing large-scale
collaboration, easy access to very large data collections and distributed computing resources.

As services will become easily available, researchers can bring them together, without being
concerned about the applications or products involved in delivering the service. This ability of
selecting and assembling together heterogeneous services, namely the service orchestration,
heavily depends on which information about a service is made public, on how to choose those
services that match the user's requirements, and on their actual run-time behavior. Virtualized in
the form of services, software applications may be accessed using well-defined high-level
interfaces while many scientific infrastructures support low-level interfaces to computing
resources, often limited to simple batch job submissions.

Currently, there are many sophisticated environments allowing creating and managing
scientific workflows, whereas the workflow itself is provided as a service. However, building
service-based applications that use scientific infrastructure still remains a challenging task, due
to the heterogeneity of Grid middleware and different programming models. In recent years,

distributed systems and Grid technology integrated many computing resources. This makes it
possible to carry on experiments where very high performance computing ability and large-scale
dataset are required. Scientists of today routinely rely on computers and information sharing over
the Internet to aid them in their research. Often, scientific progress necessitates large-scale
international collaboration; examples such as the human genome project and particle physics
experiments would not be feasible without it. The term e-Science refers to this type of large-scale
cooperation. However, the Grid didn’t realize the full promise of being the best computing
infrastructure for e-Science and it is not adopted by a large category of scientists who prefer to
choose and harness collaborative tools and technology (that often provide less efficient solutions
than Grid applications) and rely on them to design their experiments. Grid computing is better
suited for scientific organizations with large amounts of data being requested by a small number
of users (or few but large allocation requests); on the other hand there is a large number of
researchers, namely naïve researchers, requesting small amounts of data (or many but small
allocation requests).

We distinguish two classes of Grids. The first class consists of General Purpose Grids (GPG)
that provide computing and data resources to a broad class of application communities: EGEE,
TeraGrid, Open Science Grid, etc. The second class of Grids are those devoted to a specific
Scientific Domain (SDG) or technical application field, such as bioinformatics, geosciences,
chemical informatics, earthquake science, astronomy, etc. In the first category, the use of
services is based on providing the basic elements of security, data management, and remote job
execution and information services. In the second category we find more specialized services
including application services, user-level metadata services, data discovery services and
specialized workflow tools.

According to what we experienced, GPG users are not able to identify and, consequently,
define computational challenges wide enough to (saturate) the amount of computational
resources made available. They prefer to control the successful execution of their own
applications and seem unable to change the way research is done by adopting, for instance,
cooperative and interdisciplinary approach. A major problem is related to the communication
difficulties among different scientific communities that are requested to change their research
practices in terms of the vision that each community has, what it is offering and what it wants to
receive from the other scientific communities. On the other side, when there is some agreement
in different research communities, GPG seem not deliver the promise of better applications and
usage scenarios because of the complexity associated with managing and deploying applications.

The next step for supporting e-Scientists is to provide them with an e-Science environment (in
addition to the infrastructure) that comprises high level services, which may be easily and
directly accessible while hiding the infrastructure that is changing at run-time. Towards these
needs, Service Oriented Architecture (SOA) may open a completely new way for e-Science
applications by enabling the researchers to vision the entire research process as composed by
granular services allowing large-scale collaboration, easy access to very large data collections,
the use of computing resources, etc.

SCIENTIFIC WORKFLOW FEATURES
In this section, we introduce the fundamentals on scientific workflows that are relevant to our
work. Usually, scientists compose, launch and monitor their workflows, each of which consists
of a set of tasks that produce and/or consume data. Being each task a specialized data processing

activity, dependencies among tasks are created by the need for data to be produced before it is
consumed.

Since tasks that can be accessed through the network, a natural way to improve their
accessibility is to turn them into services providing uniform access to computational resources,
tools and automated service discovery. Services correspond to different functionalities that
encapsulate technical capabilities such as:

• Authenticate and authorize use of resources
• Submit, monitor and control tasks inside workflows
• Move a data set to and from the computing resource, including to and from the desktop
• Publish a data set, specifying global name and attributes
• Locate a data set by global name or by data set attributes
• Account resource usage
• Monitor and control the aggregate system (system administration, user views)
• Advanced reservation of resources

Such functionalities can be easily encapsulated into web services that have their counterparts
in the e-commerce or business-to-business (B2B) world where one must discover resources,
query capabilities, request services, and have some means of authenticating users for granting
access to resources and accounting their usage. In many ways, the requirements for service-based
e-Science environments do not differ substantially from those of business environments. Then,
focusing on the service architecture required to support e-Science, the question is: do we need to
provide entirely new solutions or can we adopt (reuse) solutions developed for B2B
environments?

In this paper we explore the latter option, and borrow many SOA concepts and standards from
the business domain. A first benefit of this approach is almost evident: the SOA framework and
in particular web services are based on widely accepted standards and supported by many
software tools, both open source and commercial. However, in the case of e-Science, there are a
number of issues that are significant departures from the classic B2B scenario. The primary
difference stems from the fact that enterprise workflows are about repetitive business processes
and science is based on experiments. While experimentation has a significant repetitive
component, the scientist is constantly altering the pattern of a workflow because that is where
discoveries are made. A second difference arises from the fact that scientific users require
workflows fitting a variety of domains. This forces scientific workflows to be composed of
heterogeneous tasks, each dealing with different requirements (i.e. fast database access, high-
performance resources, computer graphic facilities, data streaming, etc…). Related to these
differences the following specific issues must be addressed.

Modular Structure and Composability - Each scientific workflow is associated to and operates
on relevant information that may consist of a combination of tasks and data collected from
several resources. The traditional scientific user spends a substantial amount of time managing
remote data files and resources. Web services are deployed to manage data and replicas of data
automatically and all data products, including those that are intermediate results, can be
automatically saved to be reused in a related workflow or to restart a workflow that had a flaw in
a downstream component. As well, sub-workflows can be saved for later reuse.

Monitoring - Workflow tasks are related and linked together. In some sense, the workflow is a
whole of single collaborative procedures that express the experiment strategy. Often, the
scientific workflows that run on distributed Grid resources result in long-running processes and
having data services that can retain the intermediate results generated by each workflow step is
essential. It is also essential to have mechanisms to track a failed step in a workflow, suspend the
action and make a call to the resource broker to allocate new resources and then restart the
workflow.

Context Sharing and Reuse - One of the foundations of e-Science is the requirement that
experiments are repeatable and that all derived data products are traceable back to their sources.
This suggests that the tasks making up the process should be annotated, thus the experiment can
be understood, repeated and shared easily. Metadata may be considered to describe each data
product, each single task and to capture all context information, including input and output data.
Authored metadata documents can be stored in a repository to be automatically indexed for
efficient retrieval. This provides the opportunity of reusing some tasks and repeating the whole
experiment by other users who are “skilled in the art”.

Classification - Workflows must be described by proper classification and placement with
respect to the collaborative scientific community, thus the experiments can be identified,
classified and browsed by the research community members.

Moreover, scientific workflows use and collect lots of data that are distributed on
heterogeneous computing environments. To make Grid technologies more widely usable, we
devise the need for promoting wider integration with computational infrastructures (such as
clusters, desktops, P2P networks etc…) that can be more easily shared.

Scientific services: the new paradigm
E-Business organizations and e-Science environments have many elements in common, but the
question is if and how existing business models can support distributed scientific experiments.
Several approaches have been proposed for collaborative scientific environments, but an
extensive analysis in devising a mechanism for designing and implementing scientific
experiments in a collaborative environment is still missing.

The range of accessible technologies useful to support scientific experiments can be classified
broadly into these categories:

1. Toolkits specifically aimed at supporting experiments, with friendly and usable
interfaces;

2. Software tools that are not specifically designed to support experiments, but that are still
essential in enabling them (e.g., mathematical computation tools, data mining tools, data
warehousing tools);

3. Methods to ensure data privacy;
4. Widely deployed infrastructures that may be useful in scientific experiments, such as

Web services and Grid computing.

Hence, the problem is the integrated use of heterogeneous applications and software tools that
were not designed specifically to promote interaction and cooperation, but still are inherently
suitable for cooperation support. This scenario is similar to that of enterprise environments,
whose progress requires large-scale collaboration and efficient access to very large data
collections and computing resources. Although sustainable interoperability models are emerging

for market players (such as service providers, stakeholders, policy makers, and market
regulators), they are currently deployed mostly in areas where high computing power and storage
capabilities, usually needed by scientific environments, are not mission-critical. Applying
emerging web service technology to the scientific environments takes a flexible and multi-
faceted approach: it aims at assessing task-user-system functionality incrementally according to
the continuous evolution of scientific cooperative environment.

The challenge is to define services supporting a scientific environment whose basic
characteristics are as follows:

1. Efficiency: services enabling discovery and provisioning of resources free the scientist
from low-level technical and repetitive work and it contributes to the creation of “best
practices” eventually valuable, comparable and shared with other people.

2. Reproducibility: In scientific computations, service execution occurs multiple times on
the same or different instances of data by users belonging to external organizations.

3. Re-use and automatic enhancement of knowledge: services produce outputs that form
new (potential) inputs for other scientific processes triggering a virtuous re-cycle
mechanism that incrementally increases knowledge.

4. Traceability: in executing a scientific experiment, data sources can be traced and checked
a priori.

OUTLINING A SERVICE-BASED SCIENTIFIC ENVIRONMENT
The definition of a scientific workflow is typically entrusted to a human actor (but it is possible
to think to entrust this task, at least partially, to an expert system) who has the competence of
application domain (we will call this actor workflow designer and she/he will be the figure of the
researcher) and that selects the distributed resources and their composition, without necessarily
attending the implementation of the low level technical aspects.

Workflow systems are designed to run large-scale e-Science applications on distributed
heterogeneous resources. As such, they need to support multiple concurrent users, deal with
security, and run workflows that may take days to months to complete.

In this section, we outline a SOA-based architectural solution aiming at offering a
communication bridge between the heterogeneous computational environments used to develop
and host scientific applications. The idea is to outline a SOA-based scientific environment for
implementation and deployment of pluggable “experiment handlers” supported by web services.
The following basic directions feature the above outline.

Integration of scientific applications - A large category of scientific applications tend to be
self-contained, isolated pieces of software for which interoperability is not an issue. The user
spends a substantially amount of time in managing data integration since this is often done
manually. The advantage of a SOA approach is that scientific applications can be expressed in
terms of web services. In our research environment, for example, they are simply plain Java
applications with a web service interface - implemented through JAX-WS (https://jax-
ws.dev.java.net); in the more general SOA approach the transformation can be achieved through
suitable adapters and/or wrappers (Papazoglou, 2007). Most important, web service technology
has been designed to promote seamless integration and interoperation of services.

Access and usability of resources - Computing facilities available to scientific applications
address a large spectrum of resources. At one end of the spectrum are desktop/laptop hardware
and software for simple data analysis and visualization. At the other end we find resources

organized in clusters managed by some kind of lower level scheduler, e.g. LSF
(http://www.platform.com/workload-management/high-performance-computing) or SGE
(http://www.sun.com/software/sge), working for the Grid middleware configured on top of it, i.e.
gLite (http://glite.web.cern.ch/glite) or Globus (http://www.globus.org). Needless to say, the user
interfaces of such schedulers are completely different, authentication is based on different types
of user credentials (e.g. user/password or X509 certificates) and the user is often required to log
to a remote system to perform job submission. If the access to resources is abstracted by means
of a web service interface, the user interaction results almost completely decoupled from the low
level details (hardware, operating systems, middleware, schedulers). Web service wrappers over
the existing software assets (i.e. schedulers or middleware) are developed if needed.

Workflow languages and engines - Many incompatible languages and engines are available
for workflow design and enactment and the choice is strongly influenced by the model adopted
for problem at hand, since the workflow has to interface both with applications and resources. In
our model, the choice of the language is a natural consequence, since SOA has its own standard,
namely BPEL. Originally designed for service orchestration in business domain, BPEL is the de
facto standard for Web-Services-based workflows and gained much attention from scientific
communities.

SOA are inherently multi-tier architectures (Papazoglou, 2007), and clients (users or
applications) typically interact with the public abstract upper layers. Upper layers are built on the
facilities offered by lower layers, which are usually private and hidden to the clients. In the
proposed architecture the process layer is the topmost and is populated by all the BPEL
workflows relating to the e-Science domain. Its clients access a BPEL workflow instance as a
standard web service, but internally it relies on the facilities offered by finer-grained web
services, mainly business services and infrastructure services.

Business services (BS) represent scientific applications or parts of application and are
implemented by application developers in such a way to interact both with users (business
interface) and infrastructure (infrastructure interface) only through a web service interface. The
implementation is as much as possible decoupled from the details of the resources on which it
will be running. Role and responsibilities of BS include accepting user invocation both according
to the request-response pattern and one-way request pattern with asynchronous notification,
notifying its availability, performing infrastructure activities such as monitoring or clean up.

Infrastructure or bearing services provide all the necessary facilities for resource allocation,
access and management, data management, etc. through their web service interface
(infrastructure interface).

IMPLEMENTATION ASPECTS
In this section we briefly validate the feasibility of the proposed service-based environment. As
previously mentioned, a scientific experiment is modeled through an abstract workflow defining
the functional model of the experiment. The workflow tasks are mapped to the corresponding
scientific service by the workflow engine, the key being to separate logical aspects from
implementation issues. Services depend on the type of experiment and can be re-used, or
wrapped, or moved straight into a new workflow. Analogously, it is possible to include in the
workflow services belonging to external organizations, hence achieving collaboration,
knowledge sharing, and externalization of procedures.

If web service and BPEL standards are adopted, writing the suitable XML documents can
perform workflow design, deployment and enactment. Since this is not feasible for the average

researcher, the availability of a graphical tool is a strong requirement. Among those freely
available in Internet, we have chosen Netbeans IDE 6.5.1 (http://netbeans.org); for
completeness, we can cite a few others like Eclipse (http://www.eclipse.org) or JDeveloper
(http://www.oracle.com/technetwork/developer-tools/jdev/overview/index.html).

Bearing services discover suitable resources that match the user requirements and schedule
workflow tasks to the selected resources. Further, they monitor the execution of each single task
in the resource and aggregates results of the execution. There are invoked by a user i.e. by a
human or by other applications such as BPEL workflows. To enable the use of Grid and other
distributed resources through different access protocols, we implemented the following services:

• The Resource Allocation (RA) service implements the user interface for resource
management. It accepts user requests for resource allocation/release, notifies users when
resources are available, keeps track of resource endpoint and status, and coordinates other
infrastructure services. Allocation is done either directly or, depending on the resource
type, delegating to the corresponding RM (see below).

• The Resource Manager (RM) service is a wrapper around the user interface of legacy
schedulers. Its role is to accept requests from the RA, verify user credentials, and
dispatch them to the underlying scheduler. The Security Manager (SM), a part of RM in
our implementation, performs user authentication. The SM, in turn, can query a legacy
Authentication Manager (AM) such as a LDAP server. We have implemented RMs both
for LSF, SGE and gLite.

• The Business Service Proxy (BSP) is a SOAP intermediary for routing user request
messages. Its role is to accept all user requests directed to business services and route
them to the service endpoint (which may be on a private network), if necessary it can
route the service response back to the user.

• The Notification Proxy (NP) is another SOAP intermediary. It is responsible for routing
the notification messages generated by the business services to the user.

To reduce time and effort needed to interface our web services with Grid middleware, we
developed bearing services on top of jLite (http://code.google.com/p/jlite), a Java library
providing a high-level Java API with functionality similar to gLite shell commands while hiding
complexity of underlying middleware and its configuration. The library is pure Java and can be
used on any Java-capable platform. Current implementation supports complete gLite job
management lifecycle including VOMS proxy creation and delegation, transfer of job input files,
job submission, job status monitoring and retrieval of job output files. Normal, collection and
parametric gLite jobs are supported.

Among the business services, we have implemented a data mining service based on the Weka
library (Hall, 2009) as a Java JAR application whose only requirement is Sun JRE
(http://www.oracle.com/technetwork/java/javase/downloads/index.html). Such a service will run
virtually on any resource (both the application and the JRE are downloaded and installed on the
fly at run time) and is considered in the next section.

Fig. 1 shows the validated service-based environment with the main connections between
services and the other components.

Fig. 2 instead presents the UML sequence diagram describing the interactions between a
BPEL instance, the bearing and business services, and other legacy (non-web) services.

Figure 1. The validated service-based environment.

EXECUTING EXPERIMENTS
As a sample usage scenario we consider the following data mining experiment described by a
BPEL workflow and executed by a BPEL engine (running on the user desktop or somewhere
else). Given training and test set (i.e. a matrix whose rows represent samples and columns are
features) compare the accuracy of two different classifiers for an increasing number of selected
attributes (by some attribute selection algorithm). The resulting accuracy is visualized in a bar
chart diagram on the user desktop and is updated during the computation as the number of
attributes increases. Both the data mining and the visualization application can be provided by
the user or downloaded for our public repository as standalone JAR web services, which can be
executed using Sun JRE.

The resources required to perform the experiment are the following (and are specified by the
user in the workflow input file):

1. the user desktop running the visualization service (the service endpoint is provided),
statically allocated

2. one resource for every instance of the data mining service (the URL for downloading
the JAR web service is provided), dynamically allocated

The dynamical resources available to our experiment belong to the Italian Grid Infrastructure
(IGI) (http://www.italiangrid.org), which is based on gLite, and to our local cluster, which is
based on LSF.

Figure 2. UML sequence diagram connecting BPEL instance, bearing and business services.

Two kind of users are considered here: (1) the user has a valid gLite key/certificate issued by
a VO federated with IGI and wishes to use available IGI resources, (2) an anonymous user
wishes to do some tests using the resources of our local LSF cluster. In both the cases the user is
responsible for launching the visualization application on his/her desktop, and for providing
input data such as classifier names, training and test dataset location, etc…

The anonymous user does not supply any credentials, while the Grid user is required to supply
a valid proxy certificate. The input file is then sent to the BPEL engine, which creates a new
workflow instance performing the following activities (for simplicity we are considering only the
most important and leaving out the iteration over the attribute number):

1. invoke the RA providing the above resource list; the RA verifies the availability of the
visualization service, prepares the data mining job and submits it to gLite middleware
or to the RM responsible for LSF;

2. receive from the RA the resource availability notification (or an error) and the BSP
endpoint to invoke for business service operations;

3. invoke data mining operations (which are routed transparently through the BSP),
providing input data; BSP delivers the requests to the real service endpoint;

4. receive data mining service reply or notification with output data (notification is
transparently routed through the NP);

5. invoke visualization service providing classifier accuracy to be viewed on user
desktop;

6. release the resources: while the dynamically allocated data mining services are
stopped and the resources freed, the statically allocated visualization service is left
active.

CONCLUSION
This paper is a first attempt to bring together disparate e-Science resources (end-user, legacy and
grid) and applications under the common umbrella of SOA and web services. Services organize
their activity on the basis of both local and network information sources, and are related to a
particular experimental context by a workflow describing the tasks to be executed and the
context knowledge applied to solve a problem, to enact a decision or to achieve a goal. Even if
the considered architecture in not exhaustive and implementation and usage scenarios are
preliminary, the results are encouraging: it is possible to effectively run e-Science applications in
an e-Science environment entirely built around business domain technologies such as web
services and BPEL according to the SOA paradigm, while re-using existing infrastructures such
as the Grid. Our prototype explored the adoption of Service Oriented Architecture to perform a
distributed data mining experiment with the concurrent use of resources on the Italian Grid
Infrastructure (heavy computation) and on the user desktop/laptop (visualization).
As a whole, the experiment is also a service with added value, and because of this it is potentially
interesting for external organizations. It is possible to extend the proposed approach, both from
the architectural point of view and on the implementation side, with new technologies in the area
of Web applications by taking into account collaboration issues, support provided by open
standards and the continuous evolution of scientific cooperative environments and computational
platforms. Additional modular potentialities can be provided for tuning, recovery, and
evolutionary characteristics.
In addition, the described architecture shares the objectives of Portals used for enabling
distributed, federated subjects communicate toward a cooperative purpose, maintaining their
local activities and autonomy, and, when needed and established on the basis of cooperative
rules. One of the aspects to deepen is hence the organizational structure of the complex
“business” policies necessary to execute the experiments and to correctly share data and results.

ACKNOWLEDGEMENTS
The authors acknowledge Cybersar Project and the Italian Grid Infrastructure (IGI) for the use of
their computing facilities.

REFERENCES

Akram, A., Meredith D. & Allan, R. (2006). Evaluation of BPEL to Scientific Workflows.
Sixth IEEE International Symposium on Cluster Computing and the Grid, CCGRID’06 (pp. 269–
274). IEEE Computer Society.

Bosin, A., Dessì, N., Madusudhanan, B., & Pes, B. (2010). Will SOA accommodate the next step
of e-science? 10th Annual International Conference on New Technologies of Distributed
Systems, NOTERE 2010 (pp. 303-308). IEEE Computer Society.

Bosin, A., Dessì, N., & Pes, B. (2011). Extending the SOA paradigm to e-Science environments.
Future Generation Computer Systems, 27, 20-31.

Brandic, I., Pllana, S. & Benkner, S. (2006). High-level Composition of QoS-aware Grid
Workflows: An Approach that Considers Location Affinity. Workshop on Workflows in Support
of Large-Scale Science, WORKS’06. IEEE Computer Society.

Chao, K., Younas, M., Griffiths, N., Awan, I., Anane, R. & Tsai, C. (2004). Analysis of Grid
Service Composition with BPEL4WS. 18th International Conference On Advanced Information
Networking And Applications, AINA’04 (vol. 1, pp. 284-289). IEEE Computer Society.

De Roure, D., Gil, Y., & Hendler, J. A. (eds.) (2004). Special Issue on E-Science. IEEE
Intelligent Systems, 19(1), IEEE Computer Society.

Deelman, E., Singh, G., Su, M., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Vahi, K.,
Berriman, G. B., Good, J., Laity, A., Jacob, J. C. & Katz, D. S. (2005). Pegasus: A Framework
for Mapping Complex Scientific Workflows onto Distributed Systems. Scientific Programming
Journal, 13(3), 219-237.

Deelman, E., Gannon, D., Shields, M. & Taylor, I. (2009). Workflows and e-Science: An
Overview of Workflow System Features. Future Generation Computer Systems, 25, 528-540.

Dörnemann, T., Friese, T., Herdt, S., Juhnke, E. & Freisleben, B. (2007). Grid Workflow
Modeling Using Grid-Specific BPEL Extensions. German e-Science Conference 2007,
GES2007. Karlsruhe.

Elmroth, E., Hernandez, F. & Tordsson, J. (2010). Three Fundamental Dimensions of Scientific
Workflow Interoperability: Model of Computation, Language and Execution Environment.
Future Generation Computer Systems, 26, 245-256.

Emmerich, W., Butchart, B., Chen, L., Wassermann, B. & Price, S. L. (2006). Grid Service
Orchestration Using the Business Process Execution Language (BPEL). Journal of Grid
Computing, 3(3-4), 283–304.

Fahringer, T., Prodan, R., Duan, R., Hofer, J. & Nadeem, F. (2007). ASKALON: A
Development and Grid Computing Environment for Scientific Workflows. In Taylor, I. J.,

Deelman, E., Gannon, D. B. & Shields, M. (Eds.), Workflows for eScience: Scientific Workflow
for Grids (pp. 450-471). Springer-Verlag.

Fox, G. & Ganno, D. (2006). A Survey of the Role and Use of Web Services and Service
Oriented Architectures in Scientific/Technical Grids (Tech. Rep.). Indiana University.

Goble, C. A. & De Roure, D. (2007). myExperiment: social networking for workflow-using e-
scientists. 2nd Workshop on Workflows in Support of Large-Scale Science, WORKS '07 (pp. 1-2).
ACM.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The
WEKA Data Mining Software: An Update. SIGKDD Explorations, 11(1), 10-18.

Leymann, F. (2006). Choreography for the Grid: towards fitting BPEL to the resource
framework. Concurrency and Computation: Practice and Experience, 18(10), 1201– 1217.

Mc Phillips, T., Bowers, S., Zinn D. & Ludascher B. (2009). Scientific Workflows for mere
mortals. Future Generation Computer Systems, 25, 541-551.

Oinn, T., Li, P., Kell, D. B., Goble, C. & Goderis, A. (2007). Taverna / myGrid: aligning a
workflow system with the life sciences community. In Taylor, I. J., Deelman, E., Gannon, D. B.
& Shields, M. (Eds.), Workflows for eScience: Scientific Workflow for Grids (pp. 300-319).
Springer-Verlag.

Papazoglou, M. P., Traverso, P., Dustdar, S., & Leymann, F. (2007). Service-Oriented
Computing: State of the Art and Research Challenges. Computer, Nov. 2007, 64-71.

Pennington, D. D., Higgins, D., Townsend Peterson, A., Jones, M. B. & Ludäscher, B. (2007).
Ecological Niche Modeling Using the Kepler Workflow System. In Taylor, I. J., Deelman, E.,
Gannon, D. B. & Shields, M. (Eds.), Workflows for eScience: Scientific Workflow for Grids (pp.
91-108). Springer-Verlag.

Slominski, A. (2007). Adapting BPEL to Scientific Workflows. In Taylor, I. J., Deelman, E.,
Gannon, D. B. & Shields, M. (Eds.), Workflows for eScience: Scientific Workflow for Grids (pp.
208-226). Springer-Verlag.

Taylor, I., Shields, M., Wang, I. & Harrison, A. (2005). Visual Grid Workflow in Triana.
Journal of Grid Computing, 3 (3-4), 153-169.

http://code.google.com/p/jlite, last accessed Feb, 2010

http://docs.oasis-open.org/wsrf/wsrf-primer-1.2-primer-cd-02.pdf, last accessed Feb, 2010

http://glite.web.cern.ch/glite, last accessed Feb, 2010

https://jax-ws.dev.java.net, last accessed Feb, 2010

http://utopia.cs.manchester.ac.uk, last accessed Feb, 2011

http://www.oasis-open.org/committees/wsbpel, last accessed Feb, 2010

http://www.platform.com/workload-management/high-performance-computing, last accessed
Feb, 2010

http://www.sun.com/software/sge, last accessed Feb, 2010

http://www.globus.org, last accessed Feb, 2010

http://www.italiangrid.org, last accessed Feb, 2010

http://www.oracle.com/technetwork/java/javase/downloads/index.html, last accessed Feb, 2011

http://www.mygrid.org.uk, last accessed Feb, 2011

http://www.taverna.org.uk, last accessed Feb, 2011

http://www.mygrid.org.uk/tools/myexperiment, last accessed Feb, 2011

http://www.mygrid.org.uk/tools/biocatalogue, last accessed Feb, 2011

http://www.mygrid.org.uk/tools/e-labs, last accessed Feb, 2011

