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ABSTRACT
There  are  many  sophisticated  environments  that  allow  creating  and  managing  scientific  
workflows, whereas the workflow itself is provided as a service. Scientific Grids handle large  
amounts  of  data  and  deal  with  sharing  resources,  but  the  implementation  of  service-based  
applications  that  use  scientific  infrastructures  still  remains  a  challenging  task,  due  to  the  
heterogeneity of Grid middleware and different programming models.  This paper proposes to  
support scientists  with an e-Science environment providing functionality  in a simplified way,  
especially for communities whose IT skills are not so smart not only to consider the Grid a  
source  of  computational  power,  but  also  an  information  infrastructure.  To  promote  both  
integration among components and user interaction and leverage existing work in both business  
and scientific  environments,  the paper outlines  a SOA-based scientific  environment  where a  
scientific experiment is modeled through an abstract workflow defining the functional model of  
the experiment. In turn, the workflow tasks are mapped to the corresponding scientific services  
by a workflow engine, the key being to separate logical aspects from implementation issues.  
Services depend on the type of experiment and can be re-used, or wrapped, or moved straight  
into  a  new  workflow.  Infrastructural  services  discover  suitable  resources  that  match  user  
requirements and schedule workflow tasks to the selected resources. Further, they monitor the  
execution of each single task and aggregate the results of the execution. The proposed approach 
provides a simple-to-use and standardized way for the deployment of scientific workflows in a  
distributed scientific environment, including the Grid.
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INTRODUCTION
Collaboration in scientific experiments, obtained by sharing data, tools, and expertise towards a 
common scientific  goal,  is  becoming  more  and more  appealing  for  e-Science,  thanks  to  the 
availability  of  Information  and  Communication  Technology  (ICT)  methods  and  tools.  In 
particular, the Service Oriented Architecture (SOA) paradigm is attractive since it can effectively 
support distributed cooperation. However, the heterogeneity and dynamicity of services and of 
their  underlying  infrastructures  make  the  aspects  of  creating  valuable  complex  service 
environments an emerging research issue in the scientific community.



Advances  in  computing  technologies  have  enabled  scientists  to  validate  new  research 
practices in many scientific fields and to evolve from individual activities to work conducted in 
teams, exploring research issues at time and space scales both greater and finer than ever before. 
This  new research  context  is  becoming more  and more  complex in  terms  of the  number  of 
collaborating  researchers,  the  diversity  of  computing  environments  supporting  collaborative 
efforts  among  each  participant  in  data/computation  intensive  applications,  the  number  of 
emerging  powerful  and  effective  data  analysis  tools  enabled  by  new  technologies,  the 
distribution  of  data  and  computing  resources  and  the  consequent  orchestration  of  the  data 
analysis tools across various platforms.

Indeed, the computing resources available to a scientific experiment, the network capacity, 
connectivity and costs may all change over time and space since some components are added, 
removed  or  temporary  unavailable.  Similarly,  the  scientist  may  move  from one  location  to 
another, joining and leaving groups of researchers and frequently interacting with computers in 
changing experimental situations. In short, the research environment we consider is constantly in 
evolution  and  scientific  collaboration  keeps  on  increasing  the  aggregation  and  sharing  of 
heterogeneous and geographically dispersed resources. In practice, this means that computation 
does not occur at a single location in a single context, but rather spans a multitude of situations 
and locations covering a significant number of heterogeneous hardware or software components.

E-Science  is  the  term usually  applied  to  the  use  of  advanced  computing  technologies  to 
support scientists. In short we can say “e-Science is about global collaboration in key areas of 
science,  and the next generation of infrastructure that will  enable it”  (De Roure,  2004).  The 
above definition is still to come at the structural level: technical problems limit the usability of 
the e-infrastructure  presently in  production,  i.e.  the Grid,  whose technology is  still  far  from 
allowing a true interoperability of scientific applications and/or computational experiments. As a 
consequence, the level of detail needed for the successful deployment of scientific applications 
on the Grid still remains very high. Moreover, scientists want to get work done and they do not  
want to deal with the complexity of building applications that expose details of the underlying e-
infrastructure.  They must be able to express their problem by composing application specific 
components in an easy-to-use, easy-to-re-use and easy-to-modify form. Their favorite model of 
programming is to compose a workflow by means of a graphical interface via “drag-and-drop”, 
and they loathe writing “programs” in XML. However, the visual programming model must be 
sufficiently powerful to address a wide range of conditions, exceptions, iteration and adaptive 
control.

The paper aims at defining the needs and the building blocks for the next step in the advance 
of e-Science environments. Grids and distributed systems, augmented with various management 
capabilities,  are  considered essential  aspects of the e-Science environment.  To promote  both 
integration among components  and user  interaction,  the paper  proposes to  extend the use of 
solutions  developed  for  business  environments  and  in  particular  the  adoption  of  a  Service 
Oriented  Architecture.  An architectural  model  for  the  deployment  of  scientific  workflows is 
presented as well as a case study to validate the effectiveness of the proposed approach.

The paper is structured as follows. Section II reviews some related works. Section III presents 
an overview of the infrastructures supporting scientific collaboration. Section IV gives a short 
overview of the scientific workflows requirements. Section V presents the proposed architectural 
approach while Section VI gives some implementation details for the execution of BPEL-based 
scientific workflows on heterogeneous platforms, including the Grid. Section VII shows a case 



study in the field of data mining in which Web Services are combined to carry out a data mining 
process. Finally, conclusions are drawn in Section VIII.

RELATED WORK
E-Science workflow tools have been built to address a wide spectrum of applications, ranging 
from basic tools that are designed to handle tasks such as simple data analysis and visualization 
to  complex workflow systems that  are designed to run large-scale  e-Science  applications  on 
remote  Grid  resources.  These  systems  need  to  support  multiple  concurrent  users,  deal  with 
security requirements, and run workflows that may require the use of a sophisticated layer of 
services (Fox, 2006). For example, my Experiment (Goble, 2007) is an open repository for items 
arising  in  scientific  workflows  and  experiment  plans.  That  repository  has  been  established 
collecting a significant set of scientific workflows, spanning multiple disciplines and multiple 
workflow systems, built according to Web 2.0 design principles. As another environment, my 
Grid (http://www.mygrid.org.uk) is a suite of  tools designed to “help e-Scientists  get on with 
science and get on with scientists”. The tools support the creation of e-Laboratories and have been 
used in diverse domains such as systems biology, social science, music, astronomy, multimedia and 
chemistry. The tools and the infrastructure allow the design, editing and execution of workflows 
in  Taverna  (http://www.taverna.org.uk),  the  sharing  of  workflows  and  related  data  by 
myExperiment  (http://www.mygrid.org.uk/tools/myexperiment),  the  cataloguing  and  annotation  of 
services  in  BioCatalogue (http://www.mygrid.org.uk/tools/biocatalogue),  the  creation  of  user-
friendly clients such as UTOPIA (http://utopia.cs.manchester.ac.uk). These tools help to form the 
basis for the team’s work on e-Labs. (http://www.mygrid.org.uk/tools/e-labs).

McPhillips  (2009)  identifies  desiderata  for  scientific  workflow systems  –  namely  clarity, 
predictability,  report  ability,  and reusability.  Moreover,  ease of  composition  and editing,  the 
ability to automatically log and record workflow enactments and the flexibility to incorporate 
new  tools  are  all-important  features  (Fox,  2006).  The  interoperability  aspects  of  scientific 
workflow systems are addressed in Elmroth (2010) that investigates differences in the execution 
environments for local workflows and those executing on remote Grid resources. A complete 
overview of features and capabilities of scientific workflow systems is presented in Deelman 
(2009).

There are a number of widely recognized Grid workflow projects. Many of these began life in 
the “desktop” workflow space, but they have evolved over time to address the large-scale e-
Science applications. A Grid-aware framework for the construction of distributed workflows and 
their  management  and execution  is  provided  by systems  like  Triana  (Taylor,  2005),  Kepler 
(Pennington, 2007), Pegasus (Deelman, 2005), and ASKALON (Fahringer, 2007). Specifically 
designed for the life sciences, Taverna (Oinn, 2007) has been the first system to recognize the 
importance of data provenance and semantic Grid issues. Based on BPEL (http://www.oasis-
open.org/committees/wsbpel),  QoWL  (Brandic,  2006)  and  GPEL  (Slominski,  2007)  are 
significant examples of workflow systems designed for dynamic, adaptive large-scale e-Science 
applications.

In particular,  Deelman (2009)  recognizes BPEL as the de facto standard for Web-Service-
based workflows. The use of BPEL for Grid service orchestration is proposed as foundation in 
Leymann (2006) since it  fulfils many requirements of the WSRF standard (http://docs.oasis-
open.org/wsrf/wsrf-primer-1.2-primer-cd-02.pdf).  The  appropriateness  of  BPEL  is  also 
examined and confirmed in Chao (2004), Dörnemann (2007) and Emmerich (2006). These works 
mainly focus on scientific workflows and rely on extending or adapting BPEL, thus creating 



dialects. While developed for the business domain, technologies like BPEL are then recognized 
suitable to address the requirements of e-Science applications in Akram (2006), supporting the 
composition  of  large  computational  and  data  analysis  tasks  that  must  execute  on  remote 
supercomputing resources. Bosin (2010) presents an architectural model for the deployment of 
scientific workflows using BPEL, while Bosin (2011) discusses the challenges encountered in 
the seamless integration of BPEL processes within an e-Science infrastructure.

INFRASTRUCTURES SUPPORTING SCIENTIFIC COLLABORATION
Collaboration is essential for combining approaches, combining skills, and sharing resources and 
the concept of scientific experiment is rapidly moving from the idea of a local laboratory activity 
towards a computer-based process involving complex data analysis.

Workflow systems provide specialized computing environments for automating this process 
allowing  scientists  to  represent  experimental  stages  without  the  hassle  of  focusing  on 
computational resource management. Formally, a workflow is a computer program composed by 
a set of tasks that the researcher orchestrates according to her/his experimental  methodology 
without being aware of the complexity associated with managing and deploying applications. 

E-Science workflow systems have been built  to  address  a  wide spectrum of applications, 
ranging from basic tools that are designed to handle desktop tasks such as simple data analysis 
and visualization to complex workflow systems that are designed to run large-scale e-Science 
applications on heterogeneous and distributed resources including the Grid. Like in the past, a 
typical experimental scenario requires data to undergo several processing stages, launching the 
computations and storing the output results, but a workflow system makes it  much easier to 
automate the process of accessing and using distributed resources.

There  is  therefore  a  need  for  providing  functionality  in  a  simplified  way,  especially  for 
scientific communities whose IT skills are not so smart not only to consider the Grid a source of 
computational  power,  but  also  an  information  infrastructure.  Towards  these  needs,  Service-
Oriented Computing (SOC) is an emerging paradigm that may open a completely new way for e-
Science applications. In this paradigm, applications are built by assembling together independent 
computational  units, called services.  A service is a stand-alone component  distributed over a 
network, and made available through standard interaction mechanisms. An important aspect is 
that services are open, in that they are built with little or no knowledge about their operating 
environment, their clients, and further services therein invoked. This aspect enables researchers 
to  vision  a  scientific  workflow  as  composed  by  granular  services  allowing  large-scale 
collaboration, easy access to very large data collections and distributed computing resources.

As services will become easily available, researchers can bring them together, without being 
concerned about the applications or products involved in delivering the service. This ability of 
selecting  and  assembling  together  heterogeneous  services,  namely  the  service  orchestration, 
heavily depends on which information about a service is made public, on how to choose those 
services that match the user's requirements, and on their actual run-time behavior. Virtualized in 
the  form  of  services,  software  applications  may  be  accessed  using  well-defined  high-level 
interfaces  while  many  scientific  infrastructures  support  low-level  interfaces  to  computing 
resources, often limited to simple batch job submissions.

Currently,  there  are  many  sophisticated  environments  allowing  creating  and  managing 
scientific workflows, whereas the workflow itself is provided as a service. However, building 
service-based applications that use scientific infrastructure still remains a challenging task, due 
to the heterogeneity of Grid middleware and different  programming models.  In recent years, 



distributed systems and Grid technology integrated many computing resources. This makes it 
possible to carry on experiments where very high performance computing ability and large-scale 
dataset are required. Scientists of today routinely rely on computers and information sharing over 
the  Internet  to  aid  them in  their  research.  Often,  scientific  progress  necessitates  large-scale 
international  collaboration;  examples such as the human genome project and particle physics 
experiments would not be feasible without it. The term e-Science refers to this type of large-scale 
cooperation.  However,  the  Grid  didn’t  realize  the  full  promise  of  being  the  best  computing 
infrastructure for e-Science and it is not adopted by a large category of scientists who prefer to 
choose and harness collaborative tools and technology (that often provide less efficient solutions 
than Grid applications) and rely on them to design their experiments. Grid computing is better 
suited for scientific organizations with large amounts of data being requested by a small number 
of users (or few but large allocation requests);  on the other hand there is a large number of 
researchers,  namely naïve researchers,  requesting  small  amounts  of  data  (or  many but  small 
allocation requests).

We distinguish two classes of Grids. The first class consists of General Purpose Grids (GPG) 
that provide computing and data resources to a broad class of application communities: EGEE, 
TeraGrid,  Open Science Grid, etc. The second class of Grids are those devoted to a specific 
Scientific  Domain  (SDG) or  technical  application  field,  such as  bioinformatics,  geosciences, 
chemical  informatics,  earthquake  science,  astronomy,  etc.  In  the  first  category,  the  use  of 
services is based on providing the basic elements of security, data management, and remote job 
execution and information services. In the second category we find more specialized services 
including  application  services,  user-level  metadata  services,  data  discovery  services  and 
specialized workflow tools.

According to what we experienced, GPG users are not able to identify and, consequently, 
define  computational  challenges  wide  enough  to  (saturate)  the  amount  of  computational 
resources  made  available.  They  prefer  to  control  the  successful  execution  of  their  own 
applications  and seem unable to change the way research is  done by adopting,  for instance, 
cooperative and interdisciplinary approach. A major problem is related to the communication 
difficulties among different scientific communities that are requested to change their research 
practices in terms of the vision that each community has, what it is offering and what it wants to 
receive from the other scientific communities. On the other side, when there is some agreement 
in different research communities, GPG seem not deliver the promise of better applications and 
usage scenarios because of the complexity associated with managing and deploying applications. 

The next step for supporting e-Scientists is to provide them with an e-Science environment (in 
addition  to  the  infrastructure)  that  comprises  high  level  services,  which  may  be  easily  and 
directly accessible while hiding the infrastructure that is changing at run-time. Towards these 
needs,  Service Oriented  Architecture  (SOA) may open a completely new way for  e-Science 
applications by enabling the researchers to vision the entire research process as composed by 
granular services allowing large-scale collaboration, easy access to very large data collections, 
the use of computing resources, etc.

SCIENTIFIC WORKFLOW FEATURES
In this section, we introduce the fundamentals on scientific workflows that are relevant to our 
work. Usually, scientists compose, launch and monitor their workflows, each of which consists 
of a set of tasks that produce and/or consume data. Being each task a specialized data processing 



activity, dependencies among tasks are created by the need for data to be produced before it is 
consumed.

Since  tasks  that  can  be  accessed  through  the  network,  a  natural  way  to  improve  their 
accessibility is to turn them into services providing uniform access to computational resources, 
tools  and  automated  service  discovery.  Services  correspond  to  different  functionalities  that 
encapsulate technical capabilities such as:

• Authenticate and authorize use of resources
• Submit, monitor and control tasks inside workflows
• Move a data set to and from the computing resource, including to and from the desktop
• Publish a data set, specifying global name and attributes
• Locate a data set by global name or by data set attributes
• Account resource usage 
• Monitor and control the aggregate system (system administration, user views)
• Advanced reservation of resources

Such functionalities can be easily encapsulated into web services that have their counterparts 
in  the e-commerce  or business-to-business (B2B) world where one must  discover  resources, 
query capabilities, request services, and have some means of authenticating users for granting 
access to resources and accounting their usage. In many ways, the requirements for service-based 
e-Science environments do not differ substantially from those of business environments. Then, 
focusing on the service architecture required to support e-Science, the question is: do we need to 
provide  entirely  new  solutions  or  can  we  adopt  (reuse)  solutions  developed  for  B2B 
environments? 

In this paper we explore the latter option, and borrow many SOA concepts and standards from 
the business domain. A first benefit of this approach is almost evident: the SOA framework and 
in  particular  web  services  are  based  on  widely  accepted  standards  and  supported  by  many 
software tools, both open source and commercial. However, in the case of e-Science, there are a 
number  of issues that  are  significant  departures  from the classic  B2B scenario.  The primary 
difference stems from the fact that enterprise workflows are about repetitive business processes 
and  science  is  based  on  experiments.  While  experimentation  has  a  significant  repetitive 
component, the scientist is constantly altering the pattern of a workflow because that is where 
discoveries  are  made.  A  second  difference  arises  from the  fact  that  scientific  users  require 
workflows fitting  a  variety of  domains.  This  forces scientific  workflows to be composed of 
heterogeneous tasks, each dealing with different requirements (i.e. fast database access, high-
performance  resources,  computer  graphic  facilities,  data  streaming,  etc…).  Related  to  these 
differences the following specific issues must be addressed.

Modular Structure and Composability - Each scientific workflow is associated to and operates 
on relevant  information  that  may consist  of  a combination  of tasks  and data  collected  from 
several resources. The traditional scientific user spends a substantial amount of time managing 
remote data files and resources. Web services are deployed to manage data and replicas of data 
automatically  and  all  data  products,  including  those  that  are  intermediate  results,  can  be 
automatically saved to be reused in a related workflow or to restart a workflow that had a flaw in 
a downstream component. As well, sub-workflows can be saved for later reuse.



Monitoring - Workflow tasks are related and linked together. In some sense, the workflow is a 
whole  of  single  collaborative  procedures  that  express  the  experiment  strategy.  Often,  the 
scientific workflows that run on distributed Grid resources result in long-running processes and 
having data services that can retain the intermediate results generated by each workflow step is 
essential. It is also essential to have mechanisms to track a failed step in a workflow, suspend the 
action and make a call  to the resource broker to allocate  new resources and then restart  the 
workflow. 

Context Sharing and Reuse -  One of the foundations of e-Science is the requirement  that 
experiments are repeatable and that all derived data products are traceable back to their sources. 
This suggests that the tasks making up the process should be annotated, thus the experiment can 
be understood, repeated and shared easily. Metadata may be considered to describe each data 
product, each single task and to capture all context information, including input and output data. 
Authored metadata  documents  can be stored in  a repository to be automatically  indexed for 
efficient retrieval. This provides the opportunity of reusing some tasks and repeating the whole 
experiment by other users who are “skilled in the art”.

Classification - Workflows must be described by proper classification and placement with 
respect  to  the  collaborative  scientific  community,  thus  the  experiments  can  be  identified, 
classified and browsed by the research community members.

Moreover,  scientific  workflows  use  and  collect  lots  of  data  that  are  distributed  on 
heterogeneous computing  environments.  To make Grid technologies  more  widely usable,  we 
devise  the  need for  promoting  wider  integration  with  computational  infrastructures  (such as 
clusters, desktops, P2P networks etc…) that can be more easily shared.

Scientific services: the new paradigm
E-Business organizations and e-Science environments have many elements in common, but the 
question is if and how existing business models can support distributed scientific experiments. 
Several  approaches  have  been  proposed  for  collaborative  scientific  environments,  but  an 
extensive  analysis  in  devising  a  mechanism  for  designing  and  implementing  scientific 
experiments in a collaborative environment is still missing.

The range of accessible technologies useful to support scientific experiments can be classified 
broadly into these categories:

1. Toolkits  specifically  aimed  at  supporting  experiments,  with  friendly  and  usable 
interfaces;

2. Software tools that are not specifically designed to support experiments, but that are still 
essential in enabling them (e.g., mathematical computation tools, data mining tools, data 
warehousing tools);

3. Methods to ensure data privacy;
4. Widely deployed infrastructures  that  may be useful in  scientific  experiments,  such as 

Web services and Grid computing.

Hence, the problem is the integrated use of heterogeneous applications and software tools that 
were not designed specifically to promote interaction and cooperation, but still are inherently 
suitable  for  cooperation  support.  This  scenario is  similar  to  that  of  enterprise  environments, 
whose  progress  requires  large-scale  collaboration  and  efficient  access  to  very  large  data 
collections and computing resources. Although sustainable interoperability models are emerging 



for  market  players  (such  as  service  providers,  stakeholders,  policy  makers,  and  market 
regulators), they are currently deployed mostly in areas where high computing power and storage 
capabilities,  usually  needed  by  scientific  environments,  are  not  mission-critical.  Applying 
emerging  web  service  technology  to  the  scientific  environments  takes  a  flexible  and  multi-
faceted approach: it aims at assessing task-user-system functionality incrementally according to 
the continuous evolution of scientific cooperative environment.

The  challenge  is  to  define  services  supporting  a  scientific  environment  whose  basic 
characteristics are as follows:

1. Efficiency: services enabling discovery and provisioning of resources free the scientist 
from low-level technical and repetitive work and it contributes to the creation of “best 
practices” eventually valuable, comparable and shared with other people.

2. Reproducibility: In scientific computations,  service execution occurs  multiple times on 
the same or different instances of data by users belonging to external organizations.

3. Re-use and automatic  enhancement  of knowledge:  services  produce outputs that  form 
new  (potential)  inputs  for  other  scientific  processes  triggering  a  virtuous  re-cycle 
mechanism that incrementally increases knowledge.

4. Traceability: in executing a scientific experiment, data sources can be traced and checked 
a priori.

OUTLINING A SERVICE-BASED SCIENTIFIC ENVIRONMENT
The definition of a scientific workflow is typically entrusted to a human actor (but it is possible 
to think to entrust this task, at least partially, to an expert system) who has the competence of  
application domain (we will call this actor workflow designer and she/he will be the figure of the 
researcher) and that selects the distributed resources and their composition, without necessarily 
attending the implementation of the low level technical aspects.

Workflow  systems  are  designed  to  run  large-scale  e-Science  applications  on  distributed 
heterogeneous resources.  As such, they need to support  multiple  concurrent  users,  deal  with 
security, and run workflows that may take days to months to complete.

In  this  section,  we  outline  a  SOA-based  architectural  solution  aiming  at  offering  a 
communication bridge between the heterogeneous computational environments used to develop 
and host scientific applications. The idea is to outline a SOA-based scientific environment for 
implementation and deployment of pluggable “experiment handlers” supported by web services.
The following basic directions feature the above outline.

Integration of scientific applications - A large category of scientific applications tend to be 
self-contained, isolated pieces of software for which interoperability is not an issue. The user 
spends a  substantially  amount  of time in managing data  integration  since this  is  often done 
manually. The advantage of a SOA approach is that scientific applications can be expressed in 
terms of web services. In our research environment,  for example,  they are simply plain Java 
applications  with  a  web  service  interface  -  implemented  through  JAX-WS  (https://jax-
ws.dev.java.net); in the more general SOA approach the transformation can be achieved through 
suitable adapters and/or wrappers (Papazoglou, 2007). Most important, web service technology 
has been designed to promote seamless integration and interoperation of services.

Access and usability of resources - Computing facilities available to scientific applications 
address a large spectrum of resources. At one end of the spectrum are desktop/laptop hardware 
and software  for  simple  data  analysis  and visualization.  At  the  other  end we find resources 



organized  in  clusters  managed  by  some  kind  of  lower  level  scheduler,  e.g.  LSF 
(http://www.platform.com/workload-management/high-performance-computing)  or  SGE 
(http://www.sun.com/software/sge), working for the Grid middleware configured on top of it, i.e. 
gLite (http://glite.web.cern.ch/glite) or Globus (http://www.globus.org). Needless to say, the user 
interfaces of such schedulers are completely different, authentication is based on different types 
of user credentials (e.g. user/password or X509 certificates) and the user is often required to log 
to a remote system to perform job submission. If the access to resources is abstracted by means 
of a web service interface, the user interaction results almost completely decoupled from the low 
level details (hardware, operating systems, middleware, schedulers). Web service wrappers over 
the existing software assets (i.e. schedulers or middleware) are developed if needed.

Workflow languages and engines - Many incompatible languages and engines are available 
for workflow design and enactment and the choice is strongly influenced by the model adopted 
for problem at hand, since the workflow has to interface both with applications and resources. In 
our model, the choice of the language is a natural consequence, since SOA has its own standard, 
namely BPEL. Originally designed for service orchestration in business domain, BPEL is the de 
facto  standard  for  Web-Services-based workflows and gained much  attention  from scientific 
communities.

SOA  are  inherently  multi-tier  architectures  (Papazoglou,  2007),  and  clients  (users  or 
applications) typically interact with the public abstract upper layers. Upper layers are built on the 
facilities offered by lower layers,  which are usually private and hidden to the clients.  In the 
proposed  architecture  the  process  layer  is  the  topmost  and  is  populated  by  all  the  BPEL 
workflows relating to the e-Science domain. Its clients access a BPEL workflow instance as a 
standard  web  service,  but  internally  it  relies  on  the  facilities  offered  by  finer-grained  web 
services, mainly business services and infrastructure services.

Business  services  (BS)  represent  scientific  applications  or  parts  of  application  and  are 
implemented  by application  developers  in  such a  way to  interact  both  with  users  (business 
interface) and infrastructure (infrastructure interface) only through a web service interface. The 
implementation is as much as possible decoupled from the details of the resources on which it  
will be running. Role and responsibilities of BS include accepting user invocation both according 
to  the  request-response  pattern  and one-way request  pattern  with  asynchronous  notification, 
notifying its availability, performing infrastructure activities such as monitoring or clean up.

Infrastructure or bearing services provide all the necessary facilities for resource allocation, 
access  and  management,  data  management,  etc.  through  their  web  service  interface 
(infrastructure interface).

IMPLEMENTATION ASPECTS
In this section we briefly validate the feasibility of the proposed service-based environment. As 
previously mentioned, a scientific experiment is modeled through an abstract workflow defining 
the functional model of the experiment. The workflow tasks are mapped to the corresponding 
scientific  service  by  the  workflow  engine,  the  key  being  to  separate  logical  aspects  from 
implementation  issues.  Services  depend  on  the  type  of  experiment  and  can  be  re-used,  or 
wrapped, or moved straight into a new workflow. Analogously, it is possible to include in the 
workflow  services  belonging  to  external  organizations,  hence  achieving  collaboration, 
knowledge sharing, and externalization of procedures.

If web service and BPEL standards are adopted, writing the suitable XML documents can 
perform workflow design, deployment and enactment. Since this is not feasible for the average 



researcher,  the  availability  of  a  graphical  tool  is  a  strong requirement.  Among  those  freely 
available  in  Internet,  we  have  chosen  Netbeans  IDE  6.5.1  (http://netbeans.org);  for 
completeness,  we  can  cite  a  few others  like  Eclipse  (http://www.eclipse.org)  or  JDeveloper 
(http://www.oracle.com/technetwork/developer-tools/jdev/overview/index.html).

Bearing services discover suitable resources that match the user requirements and schedule 
workflow tasks to the selected resources. Further, they monitor the execution of each single task 
in the resource and aggregates results of the execution. There are invoked by a user i.e. by a 
human or by other applications such as BPEL workflows. To enable the use of Grid and other 
distributed resources through different access protocols, we implemented the following services:

• The  Resource  Allocation (RA)  service  implements  the  user  interface  for  resource 
management. It accepts user requests for resource allocation/release, notifies users when 
resources are available, keeps track of resource endpoint and status, and coordinates other 
infrastructure services. Allocation is done either directly or, depending on the resource 
type, delegating to the corresponding RM (see below).

• The  Resource Manager  (RM) service is a wrapper around the user interface of legacy 
schedulers.  Its  role  is  to  accept  requests  from  the  RA,  verify  user  credentials,  and 
dispatch them to the underlying scheduler. The Security Manager (SM), a part of RM in 
our implementation, performs user authentication. The SM, in turn, can query a legacy 
Authentication Manager (AM) such as a LDAP server. We have implemented RMs both 
for LSF, SGE and gLite.

• The  Business  Service  Proxy (BSP)  is  a  SOAP intermediary  for  routing  user  request 
messages. Its role is to accept all user requests directed to business services and route 
them to the service endpoint (which may be on a private network), if necessary it can 
route the service response back to the user.

• The Notification Proxy (NP) is another SOAP intermediary. It is responsible for routing 
the notification messages generated by the business services to the user.

To reduce time and effort needed to interface our web services with Grid middleware, we 
developed  bearing  services  on  top  of  jLite  (http://code.google.com/p/jlite),  a  Java  library 
providing a high-level Java API with functionality similar to gLite shell commands while hiding 
complexity of underlying middleware and its configuration. The library is pure Java and can be 
used  on  any  Java-capable  platform.  Current  implementation  supports  complete  gLite  job 
management lifecycle including VOMS proxy creation and delegation, transfer of job input files, 
job submission, job status monitoring and retrieval of job output files. Normal, collection and 
parametric gLite jobs are supported.

Among the business services, we have implemented a data mining service based on the Weka 
library  (Hall,  2009)  as  a  Java  JAR  application  whose  only  requirement  is  Sun  JRE 
(http://www.oracle.com/technetwork/java/javase/downloads/index.html). Such a service will run 
virtually on any resource (both the application and the JRE are downloaded and installed on the 
fly at run time) and is considered in the next section.

Fig.  1 shows the validated service-based environment  with the main connections  between 
services and the other components.

Fig.  2  instead  presents  the  UML sequence diagram describing  the  interactions  between a 
BPEL instance, the bearing and business services, and other legacy (non-web) services.



Figure 1. The validated service-based environment.

EXECUTING EXPERIMENTS
As a sample usage scenario we consider the following data mining experiment described by a 
BPEL workflow and executed by a BPEL engine (running on the user desktop or somewhere 
else). Given training and test set (i.e. a matrix whose rows represent samples and columns are 
features) compare the accuracy of two different classifiers for an increasing number of selected 
attributes (by some attribute selection algorithm). The resulting accuracy is visualized in a bar 
chart  diagram on the user desktop and is  updated  during the  computation  as the number  of 
attributes increases. Both the data mining and the visualization application can be provided by 
the user or downloaded for our public repository as standalone JAR web services, which can be 
executed using Sun JRE.

The resources required to perform the experiment are the following (and are specified by the 
user in the workflow input file):

1. the user desktop running the visualization service (the service endpoint is provided), 
statically allocated

2. one resource for every instance of the data mining service (the URL for downloading 
the JAR web service is provided), dynamically allocated



The dynamical resources available to our experiment belong to the Italian Grid Infrastructure 
(IGI) (http://www.italiangrid.org), which is based on gLite, and to our local cluster, which is 
based on LSF. 

Figure 2. UML sequence diagram connecting BPEL instance, bearing and business services.

Two kind of users are considered here: (1) the user has a valid gLite key/certificate issued by 
a  VO federated with IGI and wishes to use available  IGI resources,  (2) an anonymous  user 
wishes to do some tests using the resources of our local LSF cluster. In both the cases the user is  
responsible  for  launching the  visualization  application  on his/her  desktop,  and for  providing 
input data such as classifier names, training and test dataset location, etc…

The anonymous user does not supply any credentials, while the Grid user is required to supply 
a valid proxy certificate. The input file is then sent to the BPEL engine, which creates a new 
workflow instance performing the following activities (for simplicity we are considering only the 
most important and leaving out the iteration over the attribute number):

1. invoke the RA providing the above resource list; the RA verifies the availability of the 
visualization service, prepares the data mining job and submits it to gLite middleware 
or to the RM responsible for LSF;

2. receive from the RA the resource availability notification (or an error) and the BSP 
endpoint to invoke for business service operations;



3. invoke  data  mining  operations  (which  are  routed  transparently  through  the  BSP), 
providing input data; BSP delivers the requests to the real service endpoint;

4. receive  data  mining  service  reply  or  notification  with  output  data  (notification  is 
transparently routed through the NP);

5. invoke  visualization  service  providing  classifier  accuracy  to  be  viewed  on  user 
desktop;

6. release  the  resources:  while  the  dynamically  allocated  data  mining  services  are 
stopped and the resources freed, the statically allocated visualization service is left 
active.

CONCLUSION
This paper is a first attempt to bring together disparate e-Science resources (end-user, legacy and 
grid) and applications under the common umbrella of SOA and web services. Services organize 
their activity on the basis of both local and network information sources, and are related to a 
particular  experimental  context  by  a  workflow describing  the  tasks  to  be  executed  and  the 
context knowledge applied to solve a problem, to enact a decision or to achieve a goal. Even if 
the  considered  architecture  in  not  exhaustive  and  implementation  and  usage  scenarios  are 
preliminary, the results are encouraging: it is possible to effectively run e-Science applications in 
an  e-Science  environment  entirely  built  around  business  domain  technologies  such  as  web 
services and BPEL according to the SOA paradigm, while re-using existing infrastructures such 
as the Grid. Our prototype explored the adoption of Service Oriented Architecture to perform a 
distributed  data  mining experiment  with the  concurrent  use  of  resources  on the Italian  Grid 
Infrastructure (heavy computation) and on the user desktop/laptop (visualization).
As a whole, the experiment is also a service with added value, and because of this it is potentially 
interesting for external organizations. It is possible to extend the proposed approach, both from 
the architectural point of view and on the implementation side, with new technologies in the area 
of  Web  applications  by  taking  into  account  collaboration  issues,  support  provided  by  open 
standards and the continuous evolution of scientific cooperative environments and computational 
platforms.  Additional  modular  potentialities  can  be  provided  for  tuning,  recovery,  and 
evolutionary characteristics. 
In  addition,  the  described  architecture  shares  the  objectives  of  Portals  used  for  enabling 
distributed,  federated  subjects  communicate  toward  a  cooperative  purpose,  maintaining  their 
local activities  and autonomy,  and, when needed and established on the basis of cooperative 
rules.  One  of  the  aspects  to  deepen  is  hence  the  organizational  structure  of  the  complex 
“business” policies necessary to execute the experiments and to correctly share data and results.
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