SQUEEZING

Field quadratures

$$\mathcal{E}_{x}(z,t) = \mathcal{E}_{0} \sin kz \sin(\omega t + \phi)$$

= $\mathcal{E}_{0} \sin kz (\cos \phi \sin \omega t + \sin \phi \cos \omega t)$
= $\mathcal{E}_{1} \sin \omega t + \mathcal{E}_{2} \cos \omega t$
 $\mathcal{E}_{1} = \mathcal{E}_{0} \sin kx \cos \phi; \quad \mathcal{E}_{2} = \mathcal{E}_{0} \sin kx \sin \phi$

$$X_{1}(t) = \sqrt{\frac{\varepsilon_{0}V}{4\hbar\omega}} \mathcal{E}_{0} \sin\omega t$$
$$X_{2}(t) = \sqrt{\frac{\varepsilon_{0}V}{4\hbar\omega}} \mathcal{E}_{0} \cos\omega t$$
$$\mathcal{E}_{x}(z,t) = \sqrt{\frac{4\hbar\omega}{\varepsilon_{0}V}} \sin kx (\cos\phi X_{1}(t) + \sin\phi X_{2}(t))$$

Phasor representation

Reminder: Light waves as harmonic oscillators

New coordinates

$$q(t) = \sqrt{\frac{\varepsilon_0 V}{2\omega^2}} \mathcal{E}_0 \sin \omega t$$
$$p(t) = \sqrt{\frac{V}{2\mu_0}} B_0 \cos \omega t = \sqrt{\frac{\varepsilon_0 V}{2}} \mathcal{E}_0 \cos \omega t$$
$$p = \dot{q}$$
$$\ddot{q} = \dot{p} = -\omega^2 q$$
$$E_{em} = \frac{1}{2} \left(p^2 + \omega^2 q \right)$$

$$X_1(t) = \sqrt{\frac{\omega}{2\hbar}}q(t)$$
 $X_2(t) = \sqrt{\frac{1}{2\hbar\omega}}p(t)$

$$q(t) = \sqrt{mx(t)}$$
$$p(t) = \frac{1}{\sqrt{m}} p_x(t)$$

Field Quadratures

$$X_1(t) = \sqrt{\frac{\omega}{2\hbar}}q(t)$$
 $X_2(t) = \sqrt{\frac{1}{2\hbar\omega}}p(t)$

$$\hat{q}(t) = \sqrt{\frac{\hbar}{2\omega}} (\hat{a} + \hat{a}^{\dagger})$$
$$\hat{p}(t) = \sqrt{\frac{1}{2\hbar\omega}} (\hat{a} - \hat{a}^{\dagger})$$

$$\hat{X}_1(t) = \frac{1}{2}(\hat{a} + \hat{a}^{\dagger}) \qquad \hat{X}_2(t) = \frac{1}{2}(\hat{a} - \hat{a}^{\dagger})$$

Uncertainty on field quadratures

Coherent states, shot noise and number-phase uncertainty

$$\alpha = X_{1} + iX_{2} = |\alpha|e^{i\phi} \quad (\text{with } |\alpha| = \sqrt{X_{1}^{2} + X_{2}^{2}})$$

$$\Delta X_{1} = \Delta X_{2} = \frac{1}{2}$$

$$|\alpha|^{2} = \overline{n}$$

$$\Delta n = \left(|\alpha| + \frac{1}{4}\right)^{2} - \left(|\alpha| - \frac{1}{4}\right)^{2} = |\alpha| = \sqrt{\overline{n}}$$

$$\Delta \phi = \frac{\text{uncertainty diameter}}{\alpha} = \frac{\frac{1}{2}}{\sqrt{\overline{n}}}$$

$$\Delta n\Delta \phi \ge \frac{1}{2}$$

$$\Delta n\Delta \phi \ge \frac{1}{2}$$

$$\Delta \overline{n} = \frac{\Delta \overline{n}}{X_{1}} \quad (\Delta \overline{n})$$

Laser Interferometer Gravitational Wave Observatory

LISA

http://lisa.nasa.gov

Vacuum

Number states

$$\begin{aligned} & \mathsf{Squeezing in classical harmonic oscillator} \\ F(x) &= -kx(1 - \varepsilon \sin 2\omega_0 t), \quad \omega_0 = \sqrt{\frac{k}{m}} \\ & \mathsf{Modulated force} \\ U(x) &= \frac{1}{2}kx^2(1 - \varepsilon \sin 2\omega_0 t) \\ & \mathsf{F}(x) = -\omega_0^2 x\varepsilon \sin 2\omega_0 t \\ & \mathsf{Equation of motion} \\ x(t) &= B(t)\cos\omega_0 t + C(t)\sin\omega_0 t \\ & \mathsf{Trial solution and its 2nd derivative} \\ & \ddot{x}(t) &= -\omega_0^2 x(t) - \omega_0 \dot{B}(t)\sin\omega_0 t + \omega_0 \dot{C}(t)\cos\omega_0 t \\ & \mathsf{B}(\mathsf{C} \ \mathrm{slowly \ varying, B''=C''=0}) \\ & \mathsf{Substitute into equation of motion} \\ & -\omega_0 \dot{B}(t)\sin\omega_0 t + \omega_0 \dot{C}(t)\cos\omega_0 t \\ &= -\omega_0^2 \varepsilon \sin 2\omega_0 t \Big[B(t)\cos\omega_0 t + C(t)\sin\omega_0 t \Big] \\ & \mathsf{Apply \ trigonometry \ to \ find \ this} \\ & -\dot{B}(t)\sin\omega_0 t + \dot{C}(t)\cos\omega_0 t \\ &= -\frac{\omega_0 \varepsilon}{2} \Big[B(t)\sin\omega_0 t + C(t)\cos\omega_0 t \Big] \\ & \dot{B}(t) \\ &= +\frac{\omega_0 \varepsilon}{2} B(t); \quad B(t) \\ & = B_0 e^{\frac{\varepsilon\omega_0 t}{2}} \\ & \mathsf{Equate \ sin \ and \ cos \ components} \\ & \dot{C}(t) \\ &= -\frac{\omega_0 \varepsilon}{2} C(t); \quad C(t) \\ & = C_0 e^{-\frac{\varepsilon\omega_0 t}{2}} \end{aligned}$$

Displacement operator and creation of coherent states

$$\hat{D}(\alpha) = e^{\alpha \hat{a}^{+} - \alpha^{*} \hat{a}}$$

 $\hat{D}^{-1}(\alpha)\hat{a}\hat{D}(\alpha) = \hat{a} + \alpha$

$$\begin{split} \hat{D}^{-1}(\alpha)\hat{a}\hat{D}(\alpha)\hat{D}^{-1}(\alpha)|\alpha\rangle &= \hat{D}^{-1}(\alpha)\hat{a}|\alpha\rangle = \alpha\hat{D}^{-1}(\alpha)|\alpha\rangle \\ &= (\hat{a}+\alpha)\hat{D}^{-1}(\alpha)|\alpha\rangle \end{split}$$

$$\hat{a}\hat{D}^{-1}(\alpha)|\alpha\rangle = 0$$
$$\hat{D}^{-1}(\alpha)|\alpha\rangle = |0\rangle$$
$$\hat{D}(\alpha)|0\rangle = |\alpha\rangle$$

Displacement of Vacuum

Squeezing operator

$$\hat{S}(z) = e^{\frac{1}{2}(z\hat{a}^2 - z^*\hat{a}^{+2})}$$
 $z = re^{i\varphi}$

$$\begin{aligned} \hat{t} &= \hat{S}(z)\hat{a}\hat{S}^{+}(z) = \hat{a} + z^{*}\hat{a}^{+} + \frac{1}{2!}|z|^{2}\hat{a} + \frac{1}{3!}|z|^{2}z^{*}\hat{a}^{+} + \frac{1}{4!}|z|^{4}\hat{a} + \dots \\ &= \hat{a}\left(1 + \frac{1}{2!}r^{2} + \frac{1}{4!}r^{4} + \dots\right) + \hat{a}^{+}e^{i\varphi}\left(r + \frac{1}{3!}r^{3} + \frac{1}{5!}r^{5} + \dots\right) \end{aligned}$$

 $\hat{t} = \hat{a}\cosh r + \hat{a}^{+}e^{i\varphi}\sinh r$

$$\hat{t}\hat{S}(z)|0\rangle = 0$$

$$\hat{t}\hat{S}(z)|\alpha\rangle = tS(z)|\alpha\rangle \qquad \qquad \hat{S}(z)|\alpha\rangle = \hat{S}(z)\hat{D}(\alpha)|0\rangle$$

Displacement of Squeezed Vacuum

Squeezing operator

$$\hat{t} = \hat{a}\cosh r + \hat{a}^{+}e^{i\varphi}\sinh r$$

$$\hat{t}_{1} = \frac{1}{\sqrt{2}}(\hat{t}^{+} + \hat{t}) = \frac{1}{\sqrt{2}}(\hat{a}^{+} + \hat{a})(\cosh r + \sinh r) = \hat{X}_{1}e^{r}$$

$$\hat{t}_{2} = \frac{i}{\sqrt{2}}(\hat{t}^{+} - \hat{t}) = \frac{i}{\sqrt{2}}(\hat{a}^{+} - \hat{a})(\cosh r - \sinh r) = \hat{X}_{2}e^{-r}$$

$$\langle \alpha | \hat{S}^{+}(z)\hat{t}_{1}\hat{S}(z) | \alpha \rangle = \frac{\alpha}{2}e^{r}$$

$$\langle \alpha | \hat{S}^{+}(z)\hat{t}_{2}\hat{S}(z) | \alpha \rangle = \frac{\alpha}{2}e^{-r}$$

Generation of squeezed light

$$S(z) = e^{\frac{1}{2}(za^2 - z^*a^{+2})}$$

Detection of number squeezing

Demonstrations of squeezed light I

VOLUME 57, NUMBER 20

PHYSICAL REVIEW LETTERS

17 NOVEMBER 1986

Generation of Squeezed States by Parametric Down Conversion

Ling-An Wu, H. J. Kimble, J. L. Hall,^(a) and Huifa Wu Department of Physics, University of Texas at Austin, Austin, Texas 78712

Demonstrations of squeezed light II

VOLUME 59, NUMBER 22

PHYSICAL REVIEW LETTERS

30 NOVEMBER 1987

Pulsed Squeezed Light

R. E. Slusher, P. Grangier, A. LaPorta, B. Yurke, and M. J. Potasek *AT&T Bell Laboratories, Murray Hill, New Jersey 07974* (Received 21 September 1987)

Quantum noise in amplifiers

Exercises

- 1. Use the definition of field quadratures $X_1(t)$ and $X_2(t)$ to verify what are their physical dimensions.
- 2. A ruby laser operating at 693nm emits pulses of energy 1mJ. Calculate the uncertainty in the phase of the laser light .
- 3. The proposed Laser Interferometer Space Antenna (LISA) experiment for gravity wave detection will use a standard Michelson interferometer (i.e. no power reciclying or cavity enhancement) with a laser operating at 1064 nm The length if the arms of the interferometer is 5×10⁶ km and the power of the beams that form the interference pattern is ~10⁻¹¹ W. Calculate the minimum strain that can be detected.
- 4. !! Demonstrate that an elastic force $F = -kx(1 \varepsilon \sin 2\omega_0 t)$ modulated at twice the natural frequency ($\varepsilon <<1$) produces on an object of mass *m* oscillations that grow in time at one quadrature, while are damped at the other quadrature.