Workings of a solar cell

Semiconductor crystal

Energy bands

 $n_{Si} = 8.6 \times 10^9 \text{ cm}^{-3}$

Doping

	P-type (positive)	N-type (negative)
Dopant	Group III (E.g. Boron)	Group V (e.g. Phosphorous)
Bonds	Missing Electrons (Holes)	Excess Electrons
Majority Carriers	Holes	Electrons
Minority Carriers	Electrons	Holes

Equilibrium carrier concentration

intrinsic

$$n_0 p_0 = n_i^2$$

$$n_0 = N_D \qquad p_0 = \frac{n_i^2}{N_D}$$

$$n_0 = \frac{n_i^2}{N_A} \qquad p_0 = N_A$$

Equilibrium carrier concentration

Photon absorption

Absorption Coefficient (α) for different materials

Semiconductor crystal

$$I = I_0 e^{-\alpha x} \qquad \qquad G = \alpha N_0 e^{-\alpha x}$$

Carrier recombination

Carrier recombination

$$\tau = \frac{\Delta n}{R}$$

$$\frac{1}{\tau_{bulk}} = \frac{1}{\tau_{Band}} + \frac{1}{\tau_{Auger}} + \frac{1}{\tau_{SRH}}$$

$$\tau_{Auger} = \frac{1}{CN_A^2}$$

Diffusion length

Surface defects

Carrier movement in semiconductors

Carrier diffusion

Carrier diffusion

$$J_{p \, diff} = -q D_p \frac{dp(x)}{dx}$$

$$\frac{\partial n}{\partial t} = D_n \frac{\partial^2 n}{\partial x^2} - (U - G)$$

Carrier drift

No Electric Field

With Electric Field

Carrier drift

$$J_x = -q n \bar{v}_x$$

No Electric Field

$$J_x = \frac{nq^2\overline{t}}{m_n^*}E_x \implies J_x = \sigma E_x$$

Electric Field

$$\sigma = \frac{nq^2\bar{t}}{m_n^*}, \quad \sigma = qn\mu_n$$

$$\mu_n = \frac{q\tau}{m_n^*}, \quad \mu_n = -\frac{\bar{v}_x}{E_x}$$

$$J_x = q(n\mu_n + p\mu_p)E_x$$

p-n junction

The electric field tends to keep the holes in the p-type material and the electrons in the n-type material. However, even at thermal equilibrium some carriers hae sufficient energy to cross the depletion region.

Click to Repeat

Diode characteristics

$$J_{dark}(V) = J_0 \left(e^{\frac{qV}{kT}} - 1 \right)$$

Diode characteristics

Poisson's Equation

$$\frac{d\hat{E}}{dx} = \frac{\rho}{\varepsilon} = \frac{q}{\varepsilon} (p - n + N_D^+ - N_A^-)$$

Transport Equations

$$J_n = q\mu_n n\hat{E} + qD_n \frac{dn}{dx} \qquad J_p = q\mu_p p\hat{E} - qD_p \frac{dp}{dx}$$

Continuity Equations

General Conditions

$$\frac{dn}{dt} = \frac{1}{q} \frac{dJ_n}{dx} - (U - G) \qquad \frac{1}{q} \frac{dJ_n}{dx} = U - G$$

Under thermal equilibrium and steady state conditions

$$\frac{1}{q}\frac{dJ_n}{dx} = U - C$$

The equation below needs side should be multiplied $\frac{1}{q} \frac{dJ_p}{dx} = -(U - G)$ to be corrected. The right

$$\frac{1}{q}\frac{dJ_p}{dx} = -(U - G)$$

$$\frac{dp}{dt} = -\frac{1}{q}\frac{dJ_p}{dx} - (U - G)$$

Depletion approximation

Carrier concentration

Carrier concentration

Workings of a solar cells

Workings of a solar cells

Collection probability

Quantum efficiency

Spectral response

Workings of solar cells

With the terminals connected a current flows proportionally to the light level.

Workings of a solar cells

Solar cell characteristics

$$J(V) = J_{sc} - J_{dark}(V) = J_{sc} - J_0 \left(e^{\frac{qV}{kT}} - 1\right)$$

Fill factor

$$FF = \frac{V_{MP}I_{MP}}{V_{OC}I_{SC}}$$

Efficiency

$$P_{max} = V_{OC}I_{SC}FF$$

$$\eta = \frac{V_{OC}I_{SC}FF}{P_{in}}$$

Short circuit current

Open circuit voltage

Efficiency vs bandgap

Efficiency vs bandgap

Efficiency

$$\eta(\lambda) = \frac{\int_{0}^{\lambda} S(\lambda') \frac{E(\lambda)}{E(\lambda')} d\lambda'}{\int_{0}^{\infty} S(\lambda') d\lambda'}$$
$$= \frac{\int_{0}^{\lambda} S(\lambda') \lambda' d\lambda'}{\lambda \int_{0}^{\infty} S(\lambda') d\lambda'}$$