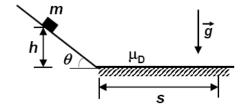

Dr. Francesco Quochi - francesco.quochi@dsf.unica.it - tel 070 675 4843

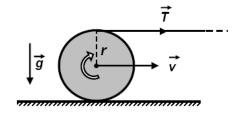
Esercizio 1

Una biglia di massa m = 500 g, legata ad una fune inestensibile di massa trascurabile, è tenuta in moto circolare uniforme con raggio r = 1,2 m in un piano verticale. La biglia ruota con una velocità pari a N = 30 giri/min. Si determini:


- 1) La velocità angolare (ω) della biglia:
- 2) La forza centripeta (F) a cui la biglia è sottoposta;
- 3) La tensione della fune (T_P) quando la biglia passa per il punto P di massima altezza da terra;
- 4) La tensione della fune (T_Q) quando la biglia passa per il punto Q di minima altezza da terra.

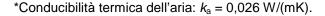
Esercizio 2

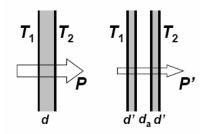
Un blocchetto di massa m = 5 kg è lasciato cadere da fermo da un'altezza h = 1,5 m lungo un piano liscio inclinato di θ = 35° rispetto ad un piano orizzontale. Il coeffic iente di attrito dinamico tra il blocco e il piano orizzontale è $\mu_D = 0.3$. Calcolare:


- 5) La velocità (v) con cui il blocchetto raggiunge la base del piano inclinato:
- 6) Il tempo (t) che blocchetto impiega ad arrestarsi una volta entrato nel piano orizzontale;
- 7) Lo spazio (s) percorso sul piano orizzontale.

Esercizio 3

Uno yo-yo a forma di disco di massa m = 1,5 kg e raggio r = 10 cm è poggiato su un piano orizzontale liscio. All'istante t = 0 il cordino avvolto attorno allo yo-yo viene sottoposto ad una tensione orizzontale costante pari a T = 3 N. Si calcoli:


- 8) La velocità di traslazione (v) dello yo-yo all'istante $t_1 = 0.2$ s;
- 9) La velocità di rotazione (ω) dello yo-yo all'istante $t_2 = 0.5$ s;



Esercizio 4

Una lastra di superficie $A = 2 \text{ m}^2$, spessore d = 1,5 cm e costituita da un materiale di conducibilità termica k = 0.3 W/(mK) separa due ambienti che si trovano a temperature $T_1 = 40$ °C e $T_2 = 20$ °C. Determinare:

- 10) La potenza termica (P) trasmessa per conduzione attraverso la lastra; 11) La potenza termica (P ') trasmessa per conduzione attraverso un multistrato
- costituito da due lastre dello stesso materiale di cui al punto precedente, di spessore d' = d/2 e separate da un'intercapedine d'aria di spessore $d_a = 1 \text{ cm.*}$

_	cognome				nome			matricola		
1	2	3	4	5	6	7	8	9	10	11