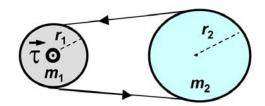

Dr. Francesco Quochi - francesco.quochi@dsf.unica.it - 070 675 4843

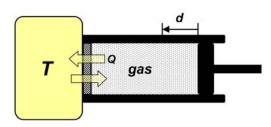
Esercizio 1

Una blocco di massa M = 5 kg e dimensioni trascurabili è poggiato su un piano orizzontale liscio. Il blocco è attaccato a due molle aventi costanti elastiche $k_1 = 150$ N/m e $k_2 = 300$ N/m e lunghezza a riposo pari a d. Le molle sono fissate a vincoli verticali rigidi posti a distanza 2d (vedi figura) l'uno dall'altro. Il blocco è tenuto in una posizione che si discosta di $x_0 = 20$ cm dal punto equidistante dai vincoli. Determinare:


- 1) La minima forza (F_{\min}) necessaria a mantenere il blocco in tale posizione.
- Il blocco viene quindi lasciato libero di oscillare. Calcolare:
- 2) La frequenza (\mathbf{v}) delle oscillazioni;
- 3) La velocità massima (v_{max}) raggiunta dal blocco;
- 4) L'accelerazione massima (**a**_{max}) a cui è sottoposto il blocco.

Esercizio 2

Due pulegge a forma di disco (masse: m_1 = 5 kg, m_2 = 15 kg; raggi: r_1 = 20 cm, r_2 = 50 cm) sono libere di ruotare senza attrito attorno ai propri assi e sono collegate come in figura da una cinghia inestensibile. All'asse della prima puleggia è connesso un motore in grado di fornire una coppia di momento costante τ = 20 Nm. All'istante t = 0 il motore comincia ad agire facendo ruotare le pulegge. Assumendo che la cinghia non slitti rispetto alle pulegge, determinare:


- 5) La differenza (ΔT) tra le tensioni a cui il cavo è sottoposto nei tratti superiore ed inferiore;
- 6) L'accelerazione lineare (a) a cui è sottoposta la cinghia;
- Il lavoro (L) fornito dal motore nell'intervallo di tempo da t = 0 a t = 1 s;

Esercizio 3

E' dato un recipiente cilindrico (superficie di base $A = 4 \times 10^{-2}$ m²) contenente n = 0.5 moli di gas ideale. La superficie laterale del recipiente è adiabatica. Il recipiente è chiuso a destra da un pistone adiabatico che può scorrere senza attrito. Il gas è in equilibrio termico con una sorgente di calore alla temperatura T = 70°C posta a contatto della base di sinistra del recipiente (parete diatermica) e il volume del gas è $V = 8 \times 10^{-3}$ m³. Determinare:

- 8) La pressione (P) esercitata dal pistone sul gas;
- Il gas viene quindi compresso molto lentamente fino a far rientrare il pistone di un tratto di lunghezza d = 10 cm. Calcolare:
- 9) Il lavoro (L) svolto dal pistone sul gas;
- 10) La variazione (ΔS) d'entropia del gas nella trasformazione.

cognome				nome			matricola		
1	2	3	4	5	6	7	8	9	10