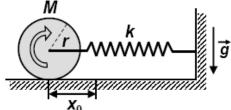

09.01.08 - FISICA GENERALE I (CORSO B) / INGEGNERIA CIVILE / A.A. 2007/08

Dr. Francesco Quochi - francesco.quochi@dsf.unica.it - 070 675 4843

Esercizio 1

In una macchina di Atwood un blocco ha massa $m_1 = 300$ g e l'altro $m_2 = 500$ g. La puleggia, di raggio r = 5 cm, è montata su cuscinetti privi di attrito. Quando il sistema viene lasciato libero di muoversi, si osserva che il blocco più pesante scende di un tratto di lunghezza s = 60 cm in un tempo t = 3 s. Calcolare:

- 1) L'accelerazione (a) dei blocchi;
- 2) La tensione a cui è sottoposto il cavo nei due tratti (T_1 , T_2);
- 3) Il momento d'inerzia (1) della puleggia.



compito A

Esercizio 2

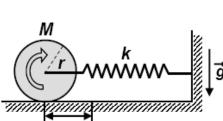
Un rullo cilindrico di massa M=2 kg e raggio r=5 cm può rotolare senza strisciare su una superficie orizzontale sotto l'effetto di una molla ideale di costante elastica k = 300 N/m, come mostrato in figura. Il sistema viene abbandonato al suo moto a partire dalla posizione iniziale in cui la molla risulta allungata di $x_0 = 30$ cm. Si determini:

- 4) che il moto è armonico e se ne calcoli il periodo di oscillazione (T);
- 5) La velocità di traslazione (v_{max}) del rullo quando la molla attraversa la posizione di riposo;
- 6) L'energia cinetica rotazionale (K_{max}) del rullo nella medesima posizione.

Esercizio 3

La temperatura di n = 5 moli di gas ideale biatomico viene aumentata di $\Delta T = 60$ K a pressione costante. Si calcoli:

- 7) La quantità di calore (Q) fornita al gas;
- 8) L'aumento di energia interna (ΔE) del gas.


(Costante dei gas: $R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1}$)

Esercizio 4

Un campione di gas ideale pari a n = 4 moli subisce un'espansione dal volume $V_1 = 30$ cm³ al volume $V_2 = 70$ cm³. Se l'espansione è isoterma a una temperatura $T = 60^{\circ}$, trovare:

- 9) Il lavoro (L) compiuto dal gas;
- 10) La variazione di entropia (ΔS) del gas.
- 11) Se l'espansione è adiabatica reversibile anziché isoterma, quanto vale ΔS ?

	c	ognome	9	nome			matricola			
1	2	3	4	5	6	7	8	9	10	11

