
E m, the simulation suggests that this matrix becomes much closer to
the ideal one (keeping almost ideal outputs for j10l and j11l input
states) if we slightly decrease the rise/fall time, say by 25% (red lines
in Fig. 4), or decrease E J2 by a similar amount.

We controlled our two-qubit solid-state circuit by applying a
sequence of pulses, and demonstrated the conditional gate opera-
tion. Although in the present experiment we paid attention only to
the amplitude of the quantum state, phase evolution during the gate
operation should also be examined for the realization of the
quantum C-NOT gate (probably with additional phase factors),
which is a constituent of the universal gate. A
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Photonic cavities that strongly confine light are finding appli-
cations in many areas of physics and engineering, including
coherent electron–photon interactions1, ultra-small filters2,3,
low-threshold lasers4, photonic chips5, nonlinear optics6 and
quantum information processing7. Critical for these applications

is the realization of a cavity with both high quality factor, Q, and
small modal volume, V. The ratio Q/V determines the strength of
the various cavity interactions, and an ultra-small cavity enables
large-scale integration and single-mode operation for a broad
range of wavelengths. However, a high-Q cavity of optical
wavelength size is difficult to fabricate, as radiation loss increases
in inverse proportion to cavity size. With the exception of a few
recent theoretical studies8–10, definitive theories and experiments
for creating high-Q nanocavities have not been extensively
investigated. Here we use a silicon-based two-dimensional
photonic-crystal slab to fabricate a nanocavity with Q 5 45,000
and V 5 7.0 3 10214 cm3; the value of Q/V is 10–100 times larger
than in previous studies4,11–14. Underlying this development is the
realization that light should be confined gently in order to be
confined strongly. Integration with other photonic elements is
straightforward, and a large free spectral range of 100 nm has
been demonstrated.

The Q of a cavity is determined by the energy loss per cycle versus
the energy stored. With no absorption by the cavity material, Q is
determined by the reflection loss at the interface between the
interior and exterior of the cavity. Total internal reflection (TIR)
and/or Bragg reflection are generally used for light confinement. For
a cavity with a size much larger than the wavelength of light, a very
high Q has already been achieved14,15. In that case, the behaviour of
light confined in a large cavity obeys ray optics theory, and each ray
of light reflected at the interface can be designed to fulfil TIR or
Bragg reflection conditions. For much smaller cavities, deviation
from ray optics becomes serious, and Q is greatly reduced. Light
confined in a very small cavity consists of numerous plane wave
components with wavevectors (k) of various magnitudes (k) and
directions owing to the localization of light. As it is difficult to
design all such plane wave components to obey TIR or Bragg
reflection conditions, photonic nanocavities with very high Q
factors have yet to be realized.

One of the best approaches to resolving the problem is the
extension of the Bragg reflection effect in multiple directions.
Structures having a two- or three-dimensional (2D or 3D) periodic
change of refractive index on the scale of the light wavelength are
required for such extension. These are known as photonic crystals,
from an analogy to solid crystals5,16. For a 3D photonic crystal,
Bragg reflection conditions can be fulfilled for all the propagation
directions of light in a certain frequency range, known as the
photonic bandgap. A small disorder or defect introduced into the
3D photonic crystal would become an ultimate photonic nano-
cavity, with ultra-large Q/V. However, 3D photonic crystals with
sufficiently strong optical confinement have yet to be created5.

A cavity surrounded by a 2D photonic crystal is considered a
feasible solution. A 2D photonic-crystal slab, as shown in Fig. 1a,
with a thickness of the order of the light wavelength is very
promising, owing to strong optical confinement for both in-plane
and vertical directions2,3. The photonic-bandgap effect is used for
light confinement in the in-plane direction, and TIR, at the interface
between the slab and the air clad, in the vertical direction. Appar-
ently, fulfilment of the TIR condition in the vertical direction is
crucial in designing high-Q/V cavities.

To investigate vertical confinement in 2D photonic-crystal slabs,
we first consider a simplified model (Fig. 2a), where the cavity
consists of a dielectric material with thickness T and length L. Both
sides of the cavity are closed by perfect mirrors, confining light in
the x direction. The structure is assumed to be uniform in the y
direction for simplicity. Light is confined by TIR in the z direction
by the air clad, as discussed above. Figure 2b shows an example of
the electric field profile inside a cavity with a very short length, 2.5l,
where l is the resonant wavelength of light in the cavity.

The strength of the vertical (z-direction) confinement by TIR can
be investigated by decomposing the electric field inside a cavity into
a set of plane wave components with various k-vectors by spatial
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Fourier transformation (FT), which is a similar approach to that
reported in ref. 10. When the tangential component of the k-vector
(jkkj or jk xj) of each plane wave lies within the range 0 to 2p/l0

(where l0 is the wavelength of light in air), the wave can escape from
the cavity to the air clad, because the conservation law for jkkj (or
Snell’s law in the broad sense) is satisfied at the interface between the
cavity and air clad, which leads to weak vertical confinement. Note
that jkkj in the air clad can take a value from 0 to 2p/l0 depending
on the propagation direction in the x–z plane, while jkkj in the
cavity takes a variety of values owing to the localization of light, as
explained before. When jkkj in the cavity is larger than 2p/l0,
the jkkj conservation law does not hold at the interface, and
light becomes strongly confined inside the cavity, which leads to
strong vertical confinement. Figure 2c shows the spatial FT spectra
of the electric field of Fig. 2b, where the leaky region (jkkj is
smaller than 2p/l0) is indicated. Large components exist inside
the leaky region, which indicates that large radiation loss occurs in
the cavity.

We now consider the loss mechanism in more detail. The electric
field profile inside the cavity can be expressed as a product of a
fundamental sinusoidal wave with wavelength l, and an envelope
function F(x) that is determined by the cavity structure. The
fundamental wave gives a delta functional FT spectrum with peaks
at k ¼ ^2p/l, while the envelope function modifies the spectrum.
In the case of Fig. 2b, the envelope function is F(x) ¼ 1 (for x ¼2L=2
to L/2) and F(x) ¼ 0 (for all other x), and the corresponding FT
spectrum is a sinc function with a width of about 2p/L (Fig. 2c).
Although the peak of the spectrum originating from the funda-
mental wave is outside the leaky region, an abrupt change in the
envelope function at the edges (x ¼ 2L/2, L/2) generates large
components inside the leaky region, leading to large radiation loss.
The smaller the cavity, the more serious the edge effect, drastically
decreasing the Q factor.

This gives an important hint for suppressing radiation loss: the
spatial variation of the envelope function at the cavity edges should
not be abrupt but gentle, so that the FT spectrum does not have
components inside the leaky region. On the basis of this idea, we

have used a gaussian function for F(x), as shown schematically in
Fig. 2d; the calculated FTspectrum is shown in Fig. 2e. The situation
has drastically changed: there are very small components inside the
leaky region, when compared with Fig. 2c. This suggests that the Q
factor can be increased significantly by tailoring the envelope
function while keeping the mode volume small.

A physical design of a high-Q photonic nanocavity has thus been
carried out using a 2D photonic-crystal slab (Fig. 1b and c). The
base structure is composed of Si with a triangular lattice of air ‘rods’
with lattice constant a ( ¼ 0.42 mm). The thickness of the slab and
the radii of the air rods are 0.6a (0.25 mm) and 0.29a (0.12 mm),
respectively. We made the initial structure of the cavity with three
missing air rods in a line17 (Fig. 1b). With this structure, light can be
confined by Bragg reflection for the in-plane directions. For the z
direction, light is confined by the air clad.

The electric field profile (Ey) of the fundamental mode of the
cavity at the centre plane of the slab is shown in Fig. 3a. We used 3D
finite-difference time-domain methods for the calculation. Unlike
the model discussed in Fig. 2, x- and y-directional (2D) FT spectra
are necessary for the investigation of the vertical confinement, as
light is confined two-dimensionally in the cavity. For the same
reason, the TIR condition (or kk conservation law) should be
expanded two-dimensionally. Considering in-plane 2D propa-
gation, the TIR condition is broken for plane waves having kk

inside a circle of diameter 2p /l0.
Figure 3b shows the FT spectra corresponding to Fig. 3a, where

the leaky region is inside the grey circle. The FT spectrum contains
large components inside the leaky region. As discussed, we consider

Figure 2 Analysis and reduction of cavity loss. a, Simplified model of a cavity

consisting of a dielectric material with thickness T and length L. For confinement of light,

both sides of the cavity are closed by perfect mirrors for the x direction, and by the air

clad based on TIR for the z direction. b, c, The electric field profile inside a cavity with a

very short (2.5l) length, and the spatial FT spectra. The leaky region is indicated as a

blue area. d, e, The electric field profile with a gentle envelope function (gaussian curve)

and its spatial FT spectrum. a.u., arbitrary units.

Figure 1 Photonic nanocavities using a 2D photonic-crystal slab. a, Schematic of the

base cavity structure having a triangular lattice of air rods with lattice constant a

( ¼ 0.42 mm). The thickness T of the slab and the radius R of the air rods are 0.6a

(0.25 mm) and 0.29a (0.12 mm), respectively. b, Starting cavity structure with three

missing air rods in a line. c, Designed cavity structure created by displacing the air rods at

both edges to obtain an ultrahigh Q/V value.
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that this is due to the abrupt change at the cavity edges. Here we
try to make confinement gentler. The strategy to obtain gentler
confinement is to change the condition for Bragg reflection at the
cavity edge. Such reflection is determined by a summation of partial
reflections at a series of rods near the cavity edge. When we move
several rods near the cavity edge, the Bragg reflection condition
should be modified. Because the phases of partial reflections at the
moved rods are changed, the resultant phase-mismatch weakens the
magnitude of Bragg reflection. To compensate for the reduction of
the reflection, light is considered to penetrate more inside the
mirror and be reflected perfectly. It means that the electric field
profile at the cavity edge becomes gentler. With the appropriate
movement of rods, the profile is considered to be close to the ideal
confinement expressed by the gaussian function as discussed above.
Using this strategy, the air rods at both edges of the cavity are shifted
(Fig. 1c). Figure 3c and d show the electric field profile and 2D FT
spectrum, respectively, where the shift of the air rods is 0.15a from
their original position. As in Fig. 3d, the FTspectrum contains much
smaller components inside the leaky region compared with Fig. 3b.
The mode volume itself is confirmed as almost unchanged. There-
fore, a significant increase of Q/V is expected to be achieved by this
method.

Encouraged by the above analysis, we fabricated samples with
various displacements. The resonant spectra were measured using a
tunable c.w. laser as a light source. The cavities were excited through
a line defect waveguide constructed by filling a row of air holes near
the cavity (Fig. 4b), and the intensity of the light emitted from the
cavities to free space was observed. Details of construction and
experimental methods are given elsewhere17. The intrinsic Q factor
of the cavity was determined from its radiation spectra by removing
the effect of coupling between the cavity and the waveguide. The
effective modal volume was calculated from the electric field profile
of the cavity4; from this it was found that V is small and constant at
(6–7) £ 10214 cm3.

Figures 4a and b show resonant spectra of cavities with various
air-rod shifts and the corresponding scanning electron microscope
(SEM) pictures, respectively. The width of the resonant peak
changes drastically with shift of air rods. The spectral width
becomes a minimum (0.045 nm) for the sample with shift
,0.15a, from which a Q factor of 45,000 is derived considering
the coupling effect with the waveguide. In Fig. 4c, the Q/V values are
plotted as a function of shift of air rods. Q/V increases by a factor of
10 upon increasing the air-rod shift up to ,0.15a. A Q/V as large as
6.4 £ 1017 cm23 or 120,000/l3 has thus been obtained. This is one
to two orders of magnitude higher than values for previously
reported cavities such as toroid microcavities, microdisks and
photonic-crystal cavities4,11–14. Further increases of Q/V should be
possible by fine-tuning the arrangement of air rods at the cavity
edges to obtain the perfect gaussian curve for light confinement.
The inset of Fig. 4a shows the spectrum measured for a wide
wavelength range, indicating that no other resonant peak exists in
the range 1,500 to 1,600 nm. The result shows that single-mode
operation is possible for a broad range of wavelengths, which is very
useful for various applications.

We have described the important design rule that light should be
confined gently to obtain high Q factors while maintaining a very
small modal volume V. An extremely large Q/V value has been
achieved by introducing displacement of air rods at both edges of a
cavity in a 2D photonic-crystal slab. We believe that this concept
could be applied to the design of various types of photonic
nanocavity; such high-Q nanocavities could be applied across
various fields of science and engineering, including nano-lasers,
nonlinear optics, nano-biomaterials, atom physics, and quantum
computing. The present result is also important for the field of

Figure 3 Physical design of high-Q/V cavity. a, The electric field profile (E y) of the

fundamental mode of the cavity shown in Fig. 1b as the starting structure. b, The FT

spectra of a. The region inside the grey circle corresponds to the leaky region. c, d, The

electric field profile and 2D FT spectrum, respectively, for the designed cavity shown in

Fig. 1c. The displacement of the air rods at the edges is set at 0.15a from the starting

structure shown in Fig. 1b.

Figure 4 Experimental results. a, b, Resonant spectra of cavities with various shifts of air

rods and their SEM pictures, respectively. PC, photonic crystal. The inset in a shows the

resonant spectrum of the cavity (with 0.15a displacement) measured over a wide

wavelength range. c, The estimated Q/V values as a function of shift of air rods. A

maximum value of Q/V ¼ 6.4 £ 1017 cm23, or 120,000/l 3, has been realized.
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photonic-crystal-based integrated circuits, as strong 3D confine-
ment of photons in an ultra-small cavity has been realized, and
leakage in the vertical direction sufficiently suppressed. A
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Possible future changes in Arctic sea ice cover and thickness, and
consequent changes in the ice-albedo feedback, represent one of
the largest uncertainties in the prediction of future temperature
rise1,2. Knowledge of the natural variability of sea ice thickness
is therefore critical for its representation in global climate
models3,4. Numerical simulations suggest that Arctic ice thick-
ness varies primarily on decadal timescales3,5,6 owing to changes
in wind and ocean stresses on the ice7–10, but observations have
been unable to provide a synoptic view of sea ice thickness, which
is required to validate the model results3,6,9. Here we use an eight-
year time-series of Arctic ice thickness, derived from satellite

altimeter measurements of ice freeboard, to determine the mean
thickness field and its variability from 658 N to 81.58 N. Our data
reveal a high-frequency interannual variability in mean Arctic ice
thickness that is dominated by changes in the amount of summer
melt11, rather than by changes in circulation. Our results suggest
that a continued increase in melt season length would lead to
further thinning of Arctic sea ice.

The prediction of future changes in Arctic sea ice, and consequent
effects on the ocean12 and atmosphere2, relies on global climate
models properly reproducing changes in ice thickness3,4,13. Knowl-
edge of ice thickness variability is also critical in determining
whether observed changes14 are natural, or anthropogenic, in
origin4. The sparseness of sea ice thickness observations means
that current understanding of the regional, and interannual, varia-
bility of sea ice thickness is entirely based on numerical models of
the Arctic6,9. However, it is unclear from model results whether ice
thickness is controlled mainly by changes in thermodynamic
(radiative or thermal) forcing5, or by dynamic (ocean and wind
stress) forcing7. The majority of Arctic Ocean models suggest that
variability in Arctic ice thickness occurs on decadal timescales5,6,9,
and is caused mainly by dynamic forcing6–8. Simulations of Arctic
ice cover covering the past four decades have been used to argue that
observed thin ice14–17 during the 1990s was a result of changes in
atmospheric6,7,10,17 or oceanic8,18 circulation. However, numerical
simulations of ice thickness are undermined by uncertainties in the
representation of physical processes9, and by differences in methods
used to couple the ice, ocean and atmosphere12, resulting in
significant discrepancies between model simulations of ice thickness
evolution14. The lack of continuous large-scale thickness measure-
ments means that conclusions drawn from numerical simulations
regarding the variability of Arctic sea ice thickness, and the processes
that control it, remain untested3,12.

We use newly developed techniques to obtain ice thickness from
satellite estimates of ice freeboard over the 8-yr period 1993–2001
(Fig. 1). The region of coverage (ROC) extends to 81.58 N, covering
an average area of 3.08 £ 106 km2, or more than half of the
permanent sea ice cover. The data cover the entire circumference
of the Arctic Ocean, including the Beaufort, Chukchi, East Siberian,
Kara, Laptev, Barents and Greenland seas. We use measurements
from the 13.8-GHz radar altimeters carried on the ERS-1 and ERS-2
satellites. By analysing individual echoes, we distinguish those
originating from consolidated first and multi-year ice floes from
those due to leads, open water and new ice. Corrections for orbits,
tides, and atmospheric delay are applied to the radar data to obtain
the elevation of ice floes and open water or new ice19. The elevation
of the ice above the water surface is then obtained by subtracting the
sea surface elevation, determined from open water measurements.

To deduce the ice thickness from ice elevation, the source of the
echoes scattered from snow-covered sea ice must be determined.
Laboratory experiments show that, under dry cold snow conditions,
a normal-incidence 13.4-GHz radar reflection from snow-covered
sea ice originates at the snow–ice interface20. The ERS radar
altimeter measurements of ice elevation therefore provide the
level of the snow–ice interface above the water level—that is, the
ice freeboard. We convert the ice freeboard measurements to ice
thickness by assuming hydrostatic equilibrium, and then using fixed
densities of ice (915.1 kg m23) and sea water (1,023.9 kg m23)21 and
a monthly climatology of snow depth and density22. The estimated
uncertainty in ice and water density, of^5 kg m23 and ^0.5 kg m23

respectively21, results in an uncertainty of ^11 cm for our mean
thickness. Interannual variability in snow loading, estimated23 to be
between 2 and 3 cm, results in a further uncertainty of 6 to 9 cm
in our ice thickness estimates. Figure 2 compares ERS thickness
estimates with those derived from near-coincident submarine
draught measurements15. A linear least-squares fit, weighted by
the estimated measurement, snow loading and ice/water density
uncertainties, shows that the correlation between the altimeter and
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