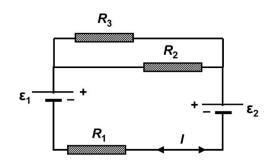

13.09.06 - FISICA GENERALE II (CORSO B) - INGEGNERIA ELETTRICA ELETTRONICA

Dr. Francesco Quochi - francesco.guochi@dsf.unica.it - 070 675 4843

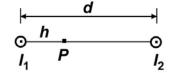
Esercizio 1

E' dato un cilindro indefinito di raggio R=3 cm (sezione trasversale in figura), uniformemente carico con densità di carica $\rho=2\times10^{-6}$ C/m³. Si consideri un punto P a distanza d=5 cm dall'asse del cilindro. Calcolare:


- 1) L'intensità del campo elettrostatico nel punto P;
- 2) La differenza di potenziale elettrostatico tra il punto P e il punto Q (sulla superficie del cilindro), V(P)-V(Q);
- 3) Il lavoro svolto dalla forza elettrica su un elettrone che si sposti dal punto Q al punto P.

Esercizio 2

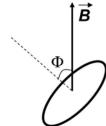
E' dato il circuito in figura, dove i generatori hanno rispettivamente forza elettromotrice ε_1 = 9 V e ε_2 = 4.5 V, e i resistori hanno resistenze R_1 = 75 Ω , R_2 = 25 Ω e R_3 = 50 Ω . Determinare:


- 4) La corrente elettrica (I) che scorre nel ramo primario;
- 5) La potenza dissipata sul resistore di resistenza R₂;
- 6) La potenza assorbita dal generatore di forza elettromotrice ε₂.

Esercizio 3

Due fili conduttori rettilinei, indefiniti e paralleli, percorsi rispettivamente da correnti elettriche concordi di intensità I_1 e I_2 (con I_1 = 2 A), sono posti a distanza d = 8 mm l'uno dall'altro. Si consideri un punto P appartenente al piano individuato dai due fili, a distanza h = 2 mm dal filo percorso da corrente I_1 (vedi figura). Calcolare:

7) L'intensità del campo magnetico generato dal filo percorso dalla corrente l_1 nel punto P.



8) L'intensità della corrente elettrica I_2 supponendo che il campo magnetico totale nel punto P sia concorde al campo generato dal filo percorso dalla corrente I_1 e abbia intensità pari a $B = 10^{-4}$ T.

Esercizio 4

Una spira conduttrice circolare di raggio r = 10 cm e resistenza elettrica R = 20 Ω è immersa in un campo magnetico uniforme di intensità B_0 = 3.5 T la cui direzione forma un angolo Φ = 30° con la normale alla spira (vedi figura). All'istante t = 0, l'intensità del campo magnetico comincia ad aumentare con velocità costante pari a B' = 1.5 T/s. Si determini al medesimo istante t = 0:

- 9) La forza elettromotrice indotta sulla spira;
- 10) La corrente elettrica indotta sulla spira;
- 11) Il momento magnetico indotto sulla spira;
- 12) Il momento torcente indotto a cui la spira è soggetta.

cognome				nome				matricola			
1	2	3	4	5	6	7	8	9	10	11	12