Corso: Fisica 1 — Docente: Francesco Quochi

Prima prova intermedia — 23 aprile 2013 — compito A

Esercizio 1

Una centrifuga per addestramento astronauti di raggio R = 4m parte da ferma con accelerazione angolare costante pari a $\alpha = 0.5$ rad/s². Calcolare:

- 1) L'accelerazione (a) a cui è sottoposta la cabina della centrifuga;
- 2) Il tempo (t) che la centrifuga impiega a fare un giro;
- 3) La velocità (v) acquistata dalla cabina alla fine del primo giro.

Esercizio 2

Due blocchi di massa rispettivamente $m_1 = 20$ kg e $m_2 = 30$ kg sono collegati da un'asta rigida di massa trascurabile. I blocchi sono poggiati su un piano orizzontale; i coefficienti di attrito statico e dinamico tra i due blocchi e la superficie del piano valgono $\mu_{S1} = 0.7$, $\mu_{D1} = 0.4$, $\mu_{S2} = 0.5$, $\mu_{D2} = 0.3$. Il blocco di massa m_1 viene tirato tramite un cavo di massa trascurabile.

4) Calcolare la massima tensione (T_{max}) del cavo per la quale i blocchi rimangono fermi.

Supponendo che la tensione superi tale valore massimo del 10%, si calcoli:



- 5) L'accelerazione (a) dei blocchi;
- 6) La velocità media ($v_{\rm m}$) dei blocchi nei primi 5s.

Esercizio 3

Un modellino di ottovolante è costituito da due sezioni in cui un blocchetto di massa m = 50g scorre senza attrito, separate da un tratto orizzontale di lunghezza L = 50cm e caratterizzato da un coefficiente di attrito dinamico pari a $\mu_D = 0,4$. Nella sezione di sinistra, il blocchetto è lasciato scivolare da un'altezza $h_0 = 70$ cm con velocità iniziale $v_0 = 3$ cm/s. Calcolare:

- 7) La velocità (v_1) con cui il blocchetto raggiunge il tratto orizzontale;
- 8) La velocità (v_2) con cui esce dal tratto orizzontale;
- 9) La potenza media ($P_{\rm m}$) dissipata nel tratto orizzontale;
- **10**) L'altezza (h) alla quale si arresta nella sezione di destra.

cognome				nome				matricola		
1	2	3	4	5	6	8	9	10		

Corso: Fisica 1 — Docente: Francesco Quochi

Prima prova intermedia — 23 aprile 2013 — compito B

Esercizio 1

Una centrifuga per addestramento astronauti di raggio R = 3m parte da ferma con accelerazione angolare costante pari a $\alpha = 0.3$ rad/s². Calcolare:

- 1) L'accelerazione (a) a cui è sottoposta la cabina della centrifuga;
- 2) Il tempo (t) che la centrifuga impiega a fare un giro;
- 3) La velocità (ν) acquistata dalla cabina alla fine del primo giro.

Esercizio 2

Due blocchi di massa rispettivamente $m_1 = 10$ kg e $m_2 = 15$ kg sono collegati da un'asta rigida di massa trascurabile. I blocchi sono poggiati su un piano orizzontale; i coefficienti di attrito statico e dinamico tra i due blocchi e la superficie del piano valgono $\mu_{S1} = 0.5$, $\mu_{D1} = 0.3$, $\mu_{S2} = 0.4$, $\mu_{D2} = 0.2$. Il blocco di massa m_1 viene tirato tramite un cavo di massa trascurabile.

4) Calcolare la massima tensione (T_{max}) del cavo per la quale i blocchi rimangono fermi.

Supponendo che la tensione superi tale valore massimo del 15%, si calcoli:

- 5) L'accelerazione (a) dei blocchi;
- 6) La velocità media ($v_{\rm m}$) dei blocchi nei primi 3s.

Esercizio 3

Un modellino di ottovolante è costituito da due sezioni in cui un blocchetto di massa m = 80g scorre senza attrito, separate da un tratto orizzontale di lunghezza L = 70cm e caratterizzato da un coefficiente di attrito dinamico pari a $\mu_D = 0,2$. Nella sezione di sinistra, il blocchetto è lasciato scivolare da un'altezza $h_0 = 90$ cm con velocità iniziale $v_0 = 5$ cm/s. Calcolare:

- 7) La velocità (v_1) con cui il blocchetto raggiunge il tratto orizzontale;
- 8) La velocità (v_2) con cui esce dal tratto orizzontale;
- 9) La potenza media ($P_{\rm m}$) dissipata nel tratto orizzontale;
- **10**) L'altezza (h) alla quale si arresta nella sezione di destra.

cognome				nome				matricola		
1	2	3	4	5	6	7	8	9	10	

Corso: Fisica 1 — Docente: Francesco Quochi

Prima prova intermedia — 23 aprile 2013 — compito C

Esercizio 1

Una centrifuga per addestramento astronauti di raggio R = 6m parte da ferma con accelerazione angolare costante pari a $\alpha = 0.2$ rad/s². Calcolare:

- 1) L'accelerazione (a) a cui è sottoposta la cabina della centrifuga;
- 2) Il tempo (t) che la centrifuga impiega a fare un giro;
- 3) La velocità (ν) acquistata dalla cabina alla fine del primo giro.

Esercizio 2

Due blocchi di massa rispettivamente $m_1 = 50$ kg e $m_2 = 55$ kg sono collegati da un'asta rigida di massa trascurabile. I blocchi sono poggiati su un piano orizzontale; i coefficienti di attrito statico e dinamico tra i due blocchi e la superficie del piano valgono $\mu_{S1} = 0.7$, $\mu_{D1} = 0.4$, $\mu_{S2} = 0.5$, $\mu_{D2} = 0.3$. Il blocco di massa m_1 viene tirato tramite un cavo di massa trascurabile.

4) Calcolare la massima tensione (T_{max}) del cavo per la quale i blocchi rimangono fermi.

Supponendo che la tensione superi tale valore massimo del 5%, si calcoli:

- 5) L'accelerazione (a) dei blocchi;
- 6) La velocità media ($v_{\rm m}$) dei blocchi nei primi 6s.

Esercizio 3

Un modellino di ottovolante è costituito da due sezioni in cui un blocchetto di massa m = 100g scorre senza attrito, separate da un tratto orizzontale di lunghezza L = 30cm e caratterizzato da un coefficiente di attrito dinamico pari a $\mu_D = 0.5$. Nella sezione di sinistra, il blocchetto è lasciato scivolare da un'altezza $h_0 = 50cm$ con velocità iniziale $v_0 = 2cm/s$. Calcolare:

- 7) La velocità (v_1) con cui il blocchetto raggiunge il tratto orizzontale;
- 8) La velocità (v_2) con cui esce dal tratto orizzontale;
- 9) La potenza media ($P_{\rm m}$) dissipata nel tratto orizzontale;
- **10**) L'altezza (h) alla quale si arresta nella sezione di destra.

cognome				nome				matricola		
1	2	3	4	5	6	7	8	9	10	

Corso: Fisica 1 — Docente: Francesco Quochi

Prima prova intermedia — 23 aprile 2013 — compito D

Esercizio 1

Una centrifuga per addestramento astronauti di raggio R = 5m parte da ferma con accelerazione angolare costante pari a $\alpha = 0.8$ rad/s². Calcolare:

- 1) L'accelerazione (a) a cui è sottoposta la cabina della centrifuga;
- 2) Il tempo (t) che la centrifuga impiega a fare un giro;
- 3) La velocità (v) acquistata dalla cabina alla fine del primo giro.

Esercizio 2

Due blocchi di massa rispettivamente $m_1 = 5$ kg e $m_2 = 10$ kg sono collegati da un'asta rigida di massa trascurabile. I blocchi sono poggiati su un piano orizzontale; i coefficienti di attrito statico e dinamico tra i due blocchi e la superficie del piano valgono $\mu_{S1} = 0.6$, $\mu_{D1} = 0.4$, $\mu_{S2} = 0.6$, $\mu_{D2} = 0.3$. Il blocco di massa m_1 viene tirato tramite un cavo di massa trascurabile.

4) Calcolare la massima tensione (T_{max}) del cavo per la quale i blocchi rimangono fermi.

Supponendo che la tensione superi tale valore massimo del 20%, si calcoli:

- 5) L'accelerazione (a) dei blocchi;
- 6) La velocità media ($v_{\rm m}$) dei blocchi nei primi 2s.

Esercizio 3

Un modellino di ottovolante è costituito da due sezioni in cui un blocchetto di massa m = 40g scorre senza attrito, separate da un tratto orizzontale di lunghezza L = 70cm e caratterizzato da un coefficiente di attrito dinamico pari a $\mu_D = 0.6$. Nella sezione di sinistra, il blocchetto è lasciato scivolare da un'altezza $h_0 = 80$ cm con velocità iniziale $v_0 = 10$ cm/s. Calcolare:

- 7) La velocità (v_1) con cui il blocchetto raggiunge il tratto orizzontale;
- 8) La velocità (v_2) con cui esce dal tratto orizzontale;
- 9) La potenza media ($P_{\rm m}$) dissipata nel tratto orizzontale;
- **10**) L'altezza (h) alla quale si arresta nella sezione di destra.

cognome				nome				matricola		
1	2	3	4	5	6	7	8	9	10	