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Crossover from Exciton to Biexciton Polaritons in Semiconductor Microcavities
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Pump-probe measurements in a microcavity containing a quantum well show that a population of
circularly polarized (s1) excitons can completely inhibit the transition to s2 one-exciton states by
transferring the oscillator strength to the biexcitonic resonance. With increasing pump intensity the linear
exciton-polariton doublet evolves into a triplet polariton structure and finally into a shifted biexciton-
polariton doublet. A theoretical model of interacting excitons demonstrates that the crossover from
exciton to biexciton polaritons is driven by three-exciton Coulomb correlation.

PACS numbers: 71.35.Cc, 73.20.Dx, 78.47.+p, 78.66.Fd
Coulomb correlation in a gas of interacting electron-hole
pairs is one of the most intriguing and fundamental topics
in the domain of condensed matter physics. Concerning
optical properties of semiconductors, the exciton resonance
is the dominant electron-hole correlation effect when the
light interacting with the sample is nearly resonant with
the band gap. Considering the correlation to higher or-
ders, the exciton-exciton interactions can give rise to the
formation of the excitonic molecule, namely, the biexciton
[1–3]. A great effort has been made to understand how the
polarization of two-exciton states influences the nonlinear
polarization in experiments like four-wave mixing, hyper-
Raman scattering, two-photon absorption, mostly focusing
on the coherent regime [4–8]. In the opposite limit of the
incoherent regime, when the polarization induced by the
laser excitation is lost, the exciton to biexciton transition
induced by an optical probe is driven only by the exci-
ton population. In this physical situation, a major issue is
the biexcitonic correlation induced by a dense s1 exciton
population on the s2 transition. Up to now experiments on
bare quantum wells (QWs) [9] and on microcavities [10]
have shown a continuous redshift of the s2 exciton en-
ergy with growing s1 population. The high scattering rate
induced by the dense s1 population prevented the reso-
lution of a biexcitonic peak in the s2 spectrum, as the ex-
citon line broadening was exceeding the biexciton binding
energy (�2 meV). The corresponding models treated the
exciton-exciton interaction in a mean field approximation,
thus reproducing the continuous shift (see, e.g., [11]).

In this Letter, we present measurements on a micro-
cavity containing a QW. The exciton to biexciton transition
is resolved in the incoherent regime, thus enabling a de-
tailed study of the exciton and biexciton oscillator strengths
for growing excitation densities. We report an oscillator
strength transfer from the excitonic to the biexcitonic tran-
sition, i.e., the excitonic absorption can be quenched by the
rise of the biexcitonic absorption. The sample is excited by
intense circularly polarized (s1) pump pulses and probed
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at different delays by a weak countercircularly polarized
(s2) test beam. In this way the optical nonlinearities ob-
served in the s2 transition are due entirely to Coulomb
correlation with the s1 population and the effects of phase
space filling are ruled out. Our experimental results show
that the presence of s1 excitons in sufficient density can
inhibit the transition to the s2 exciton states by transfer-
ring the oscillator strength to the biexciton transition. This
transition is strongly coupled to the cavity photon mode.
In analogy with the exciton polaritons [12], we call the
mixed states biexciton polaritons. By varying the optical
excitation density, the crossover from exciton to biexciton
polaritons can be monitored. In our high finesse micro-
cavity the cavity photon mode is spectrally very narrow
(�0.1 meV FWHM) and it is chosen to be resonant with
the lowest exciton state. The excitation of free electron-
hole pairs is highly suppressed and the exciton-free car-
rier scattering, which is the main source of broadening in
the high excitation regime, is considerably reduced. As
the exciton molecule formation appears to be the dominant
feature in the experiments, the theoretical analysis has to
go beyond a mean field treatment of the exciton-exciton
interactions. The data are compared with a model of inter-
acting excitons where the Coulomb correlation is included
up to the third order. The s2 probe susceptibility is ana-
lytically calculated in the presence of an incoherent s1

exciton population. The obtained QW susceptibility satis-
fies a sum rule: the total oscillator strength of the exciton
and biexciton transitions does not depend on the density
of s1 excitons. The solution of the Maxwell equations
for the microcavity with the calculated QW susceptibility
leads to transmission spectra that are in excellent agree-
ment with the experiments.

The sample, grown by molecular-beam epitaxy, is
a single 7.5-nm-wide In0.03Ga0.97As QW embedded
in a GaAs wedge shaped l cavity, whose mirrors are
AlAs�AlGa0.9As0.1 distributed Bragg reflectors. The
linear characterization reveals a Rabi splitting of 3.6 meV
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at resonance (Fig. 1a); the average linewidth of the two
polaritons is 0.13 meV [13].

We set up a degenerate pump and probe experiment with
nearly transform limited �100-fs-long pulses. The sample
was kept at a temperature of 2 K in a superfluid helium
bath. The evolution of the probe transmission spectrum
with increasing pump intensity is shown in Fig. 1b. The
probe pulse, countercircularly polarized with respect to
the pump, tests the sample 6 ps after excitation, when the
population created by the pump is still present, but has
already lost its coherence.

In the linear regime, the probe transmission spectrum
exhibits the Rabi splitting of the exciton polaritons (the
polariton linewidth is determined by the spectral resolu-
tion of the detection apparatus). For increasing excitation
rate, the Rabi doublet transforms into a triplet. The ap-
pearance of three resonances is an unambiguous proof that
two electronic transitions are coupled to the cavity photon
mode. The three peaks evolve differently as the pump den-
sity increases. The lowest resonance, rising approximately
at the energy of the biexciton transition (just below the
unperturbed lower exciton polariton), has essentially the
character of a biexciton polariton. It redshifts for increas-
ing excitation intensities. Also the uppermost polariton
redshifts and becomes dominant at the highest pumping
rates. Conversely the central peak of the triplet loses in-
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FIG. 1. (a) Continuous wave reflection spectrum at cavity
to exciton resonance, measured at a temperature of 4 K,
spectral resolution �0.1 meV (courtesy of R. P. Stanley).
(b) Transmission spectra for growing pump intensities I
at a 6 ps delay (spectral resolution � 0.7 meV); the three
dashed lines mark the energies of the empty-cavity mode (C),
the bare exciton (X), and biexciton (BIX) transitions; I0 �
1012 photons cm22 pulse21. (c) Normalized oscillator strengths
of the exciton and biexciton transitions and their sum as a func-
tion of the pump intensity. A 0.1-meV incertitude in reading
the polariton energies gives an error in the determination of the
oscillator strength of about 10%.
386
tensity and blueshifts towards the bare exciton energy; it
therefore has mainly the character of an exciton polariton.
Further, redshift and splitting of the biexciton polaritons
saturate when the central line disappears. From this be-
havior we deduce that with increasing s1 exciton density
the oscillator strength of the biexciton transition increases
at the expense of that of s2 exciton.

The exciton transition (energy EX), biexciton transition
(EBIX), and cavity mode (EC) are a system of three coupled
oscillators. The three eigenenergies P1,2,3 are the solutions
of the secular equation: �E 2 EC� �E 2 EX� �E 2 EBIX� 2

jV j2f̃X�E 2 EBIX� 2 jV j2f̃BIX�E 2 EX� � �P1 2 E� 3

�P2 2 E� �P3 2 E� � 0, where V is the half Rabi split-
ting in the linear regime and f̃X,BIX are the exciton and
biexciton oscillator strengths normalized to the excitonic
oscillator strength in the linear regime. In fact EC and
EX are known from the sample characterization, EBIX

measured in the bare quantum well is 2 meV, and P1,2,3 are
measured in the transmission spectra (Fig. 1b). Therefore
f̃X,BIX can be calculated by inverting the secular equation.
In Fig. 1c f̃X,BIX are plotted as a function of the pump
intensity: the exciton oscillator strength decreases and
conversely the biexcitonic oscillator strength increases.
Remarkably the total oscillator strength of the two transi-
tions is constant during the crossover: the biexciton tran-
sition takes the oscillator strength from the excitonic one.

The spectra taken varying the pump to probe delay sup-
port and confirm our interpretation. Two different regimes
can be distinguished in the temporal dynamics of intense
excitations in microcavities. In the coherent regime the
pump drives deep Rabi oscillations of the exciton density
[14,15]; once coherence is lost, a monotonic decay of the
exciton population follows due to recombination. In the
coherent regime, by delaying the probe pulse by 100-fs
steps, we are able to observe the effect of the pump-
driven Rabi oscillations of the s1 density, resulting in
the fast crossover between exciton and biexciton polaritons
shown in Fig. 2a. When the pulses are temporally coin-
cident (Dt � 0) we observe a practically pure biexciton-
polariton doublet, while after 0.4 ps three polariton modes
are present. After another 0.5 ps the field-driven Rabi os-
cillation has a maximum and the exciton polariton again
disappears. Once the field-driven Rabi oscillations have
completely died out, the density of incoherent s1 excitons
is still high, and only the biexciton polaritons are detected.

In the incoherent regime a much slower crossover occurs
(Fig. 2b): at a delay of approximately 25 ps the s1 popu-
lation is depleted enough to let the s2 excitonic transition
reappear. After 100 ps the linear energies of the exciton
polaritons are recovered in the s1s2 spectrum, and only
a broadening persists. Therefore the phase-space filling
phenomena (visible in the corresponding s1s1 spectrum
at the same 100-fs delay) are negligible and the s2 states
are not relevantly populated by some spin flip mechanism.

The observed transfer of oscillator strength calls for a
microscopic description. The theoretical approaches to the
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FIG. 2. Temporal dynamics of the crossover from biexciton to
exciton polaritons: (a) coherent regime; (b) incoherent regime.
The two dotted lines are the s1s1 spectra at 6 ps and 100 ps of
delay (they are on the same scale as the corresponding s1s2).
In both series the cavity energy is degenerate with that of exciton
(EC � EX � 1486.6 meV) and the incident pump intensity is
44 3 1012 photons cm22 pulse21.

biexcitonic correlation up to now have been mostly applied
to the coherent response in the regime of low density (x �3�

regime; see [8]). In the electron-hole basis, the correlation
between exciton and biexciton polarization has been satis-
factory described by means of four-particle terms. On the
contrary, in the incoherent regime the pump polarization
is lost and the correlation is given only by the real popu-
lation, i.e., six-particle terms are required. A treatment
of these terms in the electron-hole basis for 2D systems
is not yet available, being numerically very demanding.
Starting instead from the excitonic basis allows a direct
interpretation of the correlation terms and an analytical
solution of the equations, even if the features related to the
free electron-hole pairs are neglected. This approximation
is reliable in case excitons are generated resonantly
and the creation of free carriers is limited. Our model
starts from the Usui Hamiltonian for a gas of interacting
excitons coupled to the external radiation field [16,17].
The Hamiltonian reads H � H0 1 Hfield 1 Hint. The
free term is H0 �

P
s,k EX�k�By

s,kBs,k. The operator

B
y
s,k creates an exciton with spin s, wave vector k, and

energy EX�k�. The coupling to an external radiation
field Vs�t� is accounted for by Hfield �

P
s B

y
s,0�1 2

1
Ansat

B
y
s,0Bs,0�Vs�t� 1 H.c. Only excitons with k � 0

are created (assuming that the wave vector of the ra-
diation field is 0). The operators Bs,k satisfy boson
commutation rules, but the fermionic saturation of the
exciton transition appears through the term inversely
proportional to the density nsat (A is the macroscopic
quantization area). Finally, the Coulomb interaction
between excitons is represented by the term Hint �
1
2

P
s,s0,k,k0,q Vs,s0

q B
y
s,k1qB

y
s0,k02qBs,kBs0,k0 . Here, Vs,s0

q
is the spin-dependent interaction potential between exci-
tons. In the following, we consider the response to the
probe at “long” delays after the pump excitation, when
coherence is lost. This allows an analytical solution for
the probe susceptibility by calculating the one-exciton
expectation value p2�t� � �B2,0�, that is, the polarization
of the s2 exciton mode with k � 0. The probe being
weak, all terms of order higher than 1 in the probe field
are systematically neglected. We truncate the Coulomb
correlation hierarchy to the third order, neglecting higher-
order features (not observed in the experiment) and lin-
earize the equations with respect to the exciton density. In
the Heisenberg picture, the equation of motion for p2�t�
is ≠p2�t�

≠t � i
h̄ �EX�0�p2�t� 1

P
q,k V1,2

q Fk,q�t� 1 V2�t�	.
Saturation does not occur in this equation, as only s1

population is present. The exciton transition amplitude
p2�t�, driven by the electric probe field V2�t�, is coupled
through Coulomb interaction to the transition from the
one-exciton to the biexciton state. This is formally ex-
pressed by the three-operator expectation value Fk,q�t� �

�By
1,k1qB1,kB2,q�, whose equation of motion is
≠Fk,q�t�
≠t

�
i
h̄

Ω

EX�k� 1 EX�q� 2 EX�jk 1 qj��Fk,q�t� 1

X
q0

V
1,2
jq2q0jFk2q01q,q0�t� 1 dq,0V2�t�N1,k

æ
. (1)
The driving term of Fk,q�t� is proportional to the preex-
cited s1 exciton population N1,k � �By

1,kB1,k�. There-
fore the parameter N1,k determines the relative oscillator
strength of the two transitions. Notice that Fk,q�t� is
coupled through exciton-exciton interaction to Fk00,q00�t�
such that k 1 q � k00 1 q00. Since N1,k � N1dk,0, only
F0,0 has the source term ~ V2�t�. We can thus rewrite
Fk,q�t� � dk1q,0Cq�t�. After this substitution the homo-
geneous part of Eq. (1) is just the Schrödinger equation
for the biexciton problem, where Cq�t� is the relative-
motion wave function. We choose the rotating-wave frame
and consider only the effect of the ground biexciton state:
Cq�t� � beivtCBIX
q , where CBIX

q is the bound biexciton
wave function in reciprocal space. Projecting Eq. (1) on
the biexciton state [namely, operating with

P
q�CBIX

q ��],
we are left with two linear coupled equations for p2 and b.
The probe susceptibility x�v, j� ~

p2

V2
is then obtained:

x�v, j� �
fX�1 2 j�

h̄v 2 EX�0� 2 ig

1
fXj

h̄v 2 
EX�0� 2 bBIX� 2 ig
,
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FIG. 3. (a) Calculated absorption spectra for the s2 exci-
tonic transition (proportional to the imaginary part of x) for
different values of the transfer factor j (defined in the text).
(b) Corresponding transmission spectra obtained through a
transfer-matrix calculation with the following parameters:
EC 2 EX � 1.3 meV; bBIX � 2 meV; g � 1.2 meV.

where j � jC
BIX
q50j

2N1, g is a phenomenological broad-
ening, bBIX is the biexciton binding energy, and fX is the
exciton oscillator strength. The obtained susceptibility sat-
isfies the sum rule

R
h̄ dv x�v, j� � 2pifX [18]. The

transfer factor j has a clear physical interpretation. Tak-
ing a biexciton wave function CBIX

r ~ e2r�lBIX , one finds
j � n18pl

2
BIX , where n1 is the total incoherent density

of s1 excitons and lBIX is the biexciton radius. This
means that the excitation of a s2 exciton is inhibited in the
biexcitonic area 8pl

2
BIX surrounding a s1 exciton. The

condition for the complete transfer of oscillator strength
to the biexciton (j � 1) is obtained for an excited density
n1 � ntr � 1��8pl

2
BIX�.

The transmission spectra of the cavity are computed by
inserting the optical susceptibility x�v, j� of the QW in
a transfer-matrix calculation (see Fig. 3). The agreement
between theoretical and experimental spectra in the inco-
herent regime (Figs. 1c and 2b) is good for any value of
j. As the coherent part of the polarization induced by the
pump is not included in the model, the interpretation of the
spectra in the coherent transient (Fig. 2a) remains instead
qualitative.

Our theoretical model also permits us to estimate the
ratio between the saturation density nsat for the s1

transition and the transfer density ntr observed in the
s1s2 configuration. Within the Usui model one obtains
nsat � 
 16p

7 l
2
X�21 [17], from which we find ntr�nsat �

2
7 �lX�lBIX�2 , 1: the oscillator strength transfer takes
388
place at a s1 exciton density that is lower than the
saturation density for the s1 transition. This prediction
can be experimentally verified: in Fig. 2b, 6 ps after the
excitation, the Rabi splitting in the s1s1 spectrum is
reduced with respect to the linear regime. The oscillator
strength f of the s1 transition (~D2, the square of the
Rabi splitting) can be estimated to be approximately 0.3
of the linear value fX . At the same delay of 6 ps the
s1s2 spectrum exibits a biexciton-polariton doublet.
Thus, a full oscillator strength transfer occurs at an exciton
density ntr that is lower than the saturation density nsat,
as predicted by the model.

In conclusion, we report the experimental observation of
an oscillator strength transfer from the exciton to the biex-
citon transition. The phenomenon is observed in a high
quality microcavity by optically exciting a gas of s1 exci-
tons and by probing the s2 transmission spectrum. A sum
rule holds stating that the total oscillator strength of exci-
ton and biexciton transitions is independent of the density
of s1 excitons. The transfer is theoretically described in
terms of a three-exciton correlation induced by Coulomb
interaction.
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