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Anharmonic mixing between two phonons in red mercury iodide
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With use of Raman spectroscopy we have investigated the anharmonic mixing between two opti-
cal phonons of E, symmetry in red mercury iodide. By taking into account the presence of several
decay channels contributing to phonon lifetime, the experimental line-shape anomalies due to mode
coupling have been reproduced with good accuracy. The temperature behavior of the anharmonic

interaction is in agreement with theory.

I. INTRODUCTION

First-order Raman light scattering is a powerful tool
for investigating optical phonons whose wave vector is
close to the center of the Brillouin zone. With the aid of
group theory it is possible to analyze experimental spec-
tra and obtain typical crystal parameters related to in-
teractions among atoms in the lattice. Resonance
linewidth is mainly the consequence of the finite lifetime
of the normal modes interacting with a continuum of two
or more phonons. This coupling is introduced by anhar-
monic terms in the atomic displacement expansion of
crystal total energy. Broadening is indeed the immediate
evidence of this interaction; however, the study of finer
details, such as line-shape anomalies,! ~? is important in
order to have a more complete knowledge of the micro-
scopic phonon coupling in crystals.

In addition to line broadening, the interaction of a
one-phonon state with the continuum, for example, of
two phonons gives an interference effect well described by
Fano’s theory.!”* Nevertheless, it requires that two-
phonon states are Raman active, a process which is
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FIG. 1. Schematic representation of Raman scattering by
two phonons coupled indirectly by the perturbation Hamiltoni-
an H,,. The ground state |¢,) is connected to the phonon
state |¢,) (|¢,)) both directly and indirectly, via the state |¢,)
(I¢,)) and the continuum of two acoustic-phonon states |é, ).
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known to be of second order. We can also have an in-
terference effect between two Raman modes |¢,) and
| #,) with the same symmetry,"> when anharmonicity
couples the two optical vibrations. The resulting line-
shape distortion can be explained as due to interference
from the Raman amplitude of the one-step transition
(12| Ry | ¢o) with the three-step transition

(S12) Hann |06 ) (b | H yon [6201)) {1y Ry1) )

(see Fig. 1). In both cases only the phonon |¢,,,) is
created, but while the first process is the usual one, the
second is indirect. It requires the presence of the
Ramari-active phonon |é,(;,) and the multiphonon states
|¢. ), coupled to modes |#,) and |$,) by the anharmonic
Hamiltonian H,,,. Anyway, mixing between two optical
phonons is not always possible; for example, it is forbid-
den for diatomic crystals with NaCl structure by symme-
try considerations.® In fact, crystal symmetry, the de-
tailed structures of the continuum states |¢, ), and tem-
perature play an essential role in the phonon line shape.

Our aim is to investigate their influence on the anhar-
monic mixing between two phonons of E, symmetry in
mercury iodide.”® For this compound a reasonable inter-
pretation of Raman spectra has been given quite recent-
ly’"!2 and the study of anharmonicity is still an open
problem.”®!3 The E, phonons are particularly suitable
for studying mode interaction and its behavior with tem-
perature because (1) they have a good Raman efficiency
when excited with photon energy close to the band gap
(this allows us to perform a reliable line-shape analysis),
and (2) the crystal anisotropy lifts the degeneracy of the
acoustic bands, making it possible o investigate how the
presence of several decay (scattering) channels affects
phonon line shape.

In the first part of this paper we develop a model which
accounts for two-phonon mixing at temperatures
different from 0 K. Then a comparison with the previ-
ous models is presented. In the second part an analysis of
the experimental data with our model is performed.

II. SPECTRAL SHAPE OF TWO MODES COUPLED
INDIRECTLY BY ANHARMONIC FORCES

The Raman spectral shape of two optical phonons is
related to the phonon correlation functions @, ; as fol-
lows:®
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where ¢;(x,7) is the phonon-field operator associated with B=kzT. From the last equation we can see that all
with the ith-optical mode, A} is its Raman strength, and ~ we need is the propagator D; ;- The unperturbed free-
( ) represents the canonical ensemble average ; kK must  phonon propagator D,?j is
be taken ~0 due to the small value of the wave vector of
the photon involved in Raman scattering.

In order to find an explicit form of Eq. (1), we intro-
duce the temperature Green’s functions defined as'*

D,-,jE<TT[¢,»(X’,T‘)¢]-(X,T)]> , (2)

20(k,j) 1

D?. =56, ; ,
“Bh wlto?(k,))

ij

with ¢;(x,7)=e”"¢,e "™ and T, the time-r ordering  where w(k,i) is the frequency of the mode with wave vec-
operator. Then the phonon propagator D; (k,w;) is tor k of the ith-phonon branch. The relation between
defined as the Fourier coefficient of D, ;,'* where o, are D?; and D, ; is given by the Dyson equation, which be-
the Matsubara frequencies for a boson field. comes, in matrix notation,

The relation between the Fourier transform of the true

time correlation function ®,; and D, ;(k,io;—w) is

given by D=D’+D°GD , (5
. Dij(k,a)‘i‘ie)—Dij(k,w_iG)
lim — —

e—0+ 2mi

where G, , is the phonon proper self-energy. When only
1 - two modes are involved the D, ; elements are easily found
= l1—e P, (k,0), (3 : , ij

21rBﬁ( ¢ (k) ) by inversion of Eq. (5):

8, D)+ (=1 *'DIDIG,_ 5,

D;;= 5 5 o . (6)
1‘”DlGl,l_Dsz,z“‘Dll)z(Gl,le,z"Gl,sz,l)
At temperatures where only cubic anharmonicity is relevant, the real and imaginary parts of G; ,, A;; and T, ;, for a
phonon with k ~0, can be written as® '
Ai‘j(O,w,T):*I% s 1J1 1.1‘2 J. vJ1 Kb
kl’j|’/2 w(k],]‘ )w(kl,]z)
v (ni+ny,+1) n;—n, N n;—n,
[w—w(k,,jl)—a)(kl,jz)]p [w~a)(k1,j1)+a)(kl,j2)]p [w+a)(k1,j1)—a)(k1,j2)]p ’
(7
r,,0,0,T)= 18277 b 1bJ1 1.{2 J. bJ13XpJ2
‘h kl’j]‘jz Cl)(k],_]])a)(kl,_lz)
X[(ny+n,+Ddlo—olk,,j)—olk,,j,))—(n;—n,)w—olk,j,)+olk,j,))
+(n, —n,)80+ ok, j)—olk,j))], (8)

where Vs are the Fourier coefficients of atomic force constants,®'®!7 n the thermal population factor, and ( ), means
that the principal part must be taken. The diagonal terms A;; and I';; are the energy shift and the line broadening of
the i-phonon state. The first term of these equations corresponds to a decay of the w(0,7) phonon into two vibrations of
lower energy, w(k,,j;) and w(—k,,j,). Second and third terms describe, instead, a scattering event in which the
thermal phonons w(k,,j,;) and w(—k,,j,) are one incoming and the other outgoing (or vice versa). The last two pro-

cesses are relevant only at high temperature. If in the anharmonic processes the two-phonon states are acoustic, the
real factor

V(0,i5ky ji; =k, j2) V(0,5 —ky, ji5Ky,j3)
(L)(kpj] )w(kpjz)
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can be approximated as k,; independent'® in the long-

wavelength limit. A, ; and T, ; assume the useful forms
A ;= X UG 5050)P @3 T)
Jydy

r,;= 2 Ui j5j1502)D(@35155,.T) .
J1Jy

(10)

At high temperature the function D(w;j.j,; T) is propor-
tional to the density of states of the two acoustic-phonon
states j, and j, times T /w and thus it is a linear function
of oT.

Finally, combining Egs. (1) and (3) we find that Raman
Stokes cross section is given by

R=p#[n(w)+1] [Im3 4;4;D; ;(k~0, ») |, (11
ivj
where Im( ) means that the imaginary part is taken.

In an ideal harmonic crystal, because of normal-mode
independence no mixing among phonons exists, so that
only the diagonal parts D; jA,-Z are present. However,
with anharmonic coupling, the off-diagonal terms in Eq.
(11) contribute to Raman cross section by mixing pho-
nons close in energy, as pointed out in the Introduction.

In order to reproduce experimental spectra, two mod-
els corresponding to different approximations of Eq. (11),
are normally used. One of them, the simplest, considers
two Lorentzian-like resonances and implies, as a conse-
quence, no coupling (L model). The second one,
developed solely for T=0 K by Zawadowski and Ruvalds
(ZR model),> accounts for interactions between the opti-
cal phonons in a simplified manner, i.e., a single decay
channel is considered. In this case it is possible to show
with little algebra® that the Raman cross section vanishes
at the frequency'®

Uid4,0,+U, 4,0, 12

W, y
"2U 4 0,4+ U, 4,0,

which lies between the phonon frequencies w; and w,.
Moreover, only two anharmonic force constants, which
couple the two optical modes with the single acoustic
branch, are present. These two quantities are real and
determine both linewidths and mode mixing. These con-
stants are related directly to linewidths, so that the off-
diagonal terms of the proper self-energy G,, are com-
pletely fixed by the broadening values.

On the contrary, if we consider three acoustic branches
whose coupling with the two optical modes is different,
more than two independent parameters describing anhar-
monic interaction are present. If the coupling constants
of optical modes with the transverse- and longitudinal-
acoustic phonons are not the same, the corresponding de-
cay channels do not interfere destructively at the same
frequency, as seen from Eq. (12). This holds particularly
for anisotropic crystals or crystals having many atoms in
the unit cell, for which several anharmonic processes are
possible for the optical modes. Thus the values of the
mode-mixing parameter G,, and then I';, can not be
fixed a priori. In a more realistic model I, , should range
between F1’2=(F1’1G2,2)1/2 and '} ,=0 cm™!, respec-
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FIG. 2. Raman spectra of two optical phonons obtained with
the L (— — —) model, the ZR (- - . .) model, and our model
( ).

tively, for a complete interference effect’ or for the pure
Lorentzian case. In Fig. 2 we report the theoretical
curves corresponding to the L model, and ZR model, and
our model at 300 K. The parameters used are typical of
the E} and E, phonons as we will see later. While no
difference exists among models for energy close to the
peaks, the low- and high-energy sides of the resonances
are distorted. The repulsive effect, caused by indirect
coupling, is overestimated by ZR theory while it is com-
pletely neglected in the L case. In our model, instead, the
Raman intensity can range from the two extreme approx-
imations, depending on the relative strength of each de-
cay channel and thus on the G, ; value.

III. EXPERIMENTAL RESULTS AND DISCUSSION

Mercury iodide single crystals were grown at room
temperature by evaporation of proper solvent in which
high-purity Hgl, was dissolved. This “old and slow”
technique gave the best results in order to have single
crystals almost free from crystalline defects and thermal
residual stresses.

Raman spectra were excited by a 100-mW He-Ne laser
(632.8 nm). Scattered light dispersed through a 1-m Spex
Industries double monochromator was detected by a
cooled ITT FW130 photomultiplier. The usual photon-
counting technique was used to process the signal. For
variable-temperature measurements, samples were
mounted strain free onto the cold finger of a closed-cycle
system. The permanence of the crystal in vacuum was
limited with the aim of minimizing sample damage. In-
coming and outgoing photons were directed along and
perpendicularly to the crystal ¢ axis, respectively; orthog-
onal polarizations, one of which directed along the c axis,
were used to excite E, modes.’ The right-angle geometry
was the best experimental configuration to reduce at very
low level the diffused laser light into the spectrometer
and, at the same time, to select the proper E, polariza-
tions. We obtained spectra virtually free from stray light
and “ghosts” up to 9 cm ~! with a maximum resolution of
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0.5 cm~!. Instrumental band-pass shape was determined
recording the laser line.

The crystalline structure of red mercury iodide belongs
to the D}, (P4,/nmc) space group. It is a layered com-
pound with six atoms per unit cell. At 25 K four Raman
lines at 20, 32, 114, 143 cm ™! are present. The two reso-
nances at low frequency correspond to phonons with E,
symmetry, while the 114- and 143-cm ! lines are attrl-
buted to 4, and Blg modes.” The other v1brations Blg
and E 2 modes, occur at about 29 and 114 cm ™! (at room
temperature) and are characterized by very low Raman
cross section.”!!

In Fig. 3 the Raman spectra of red mercury iodide are
reported for four different temperatures. The energy sep-
aration of E, resonances is about 10 cm!. At low temper-
ature (less than 150 K) the two peaks are well separated.
When temperature is raised, peaks broaden and shift to-
wards lower frequency while their tails start to overlap.
However, no zero intensity is present in the spectra be-
tween the two modes.

In order to analyze the different contributions to E,-
phonon lifetime, the phonon linewidth T" and the energy
shift A as a function of temperature are reported in Fig.
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FIG. 3. Raman spectra (solid curves ) of E; and E; phonons
for four temperatures. Solid circles are the best fitting of experi-
mental data.
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4. A linear behavior of A;; and T';; for both modes is
displayed. The values of dA,;;/dT, dTI';;/dT, and the
linewidth at 0 K are, respectively, dA,,/dT=-7x10""
em™'/K, dA,,/dT=—9X10"% c¢m™ I/K; dT, ,/dT=
6X107% cm ‘/K dT,,/dT=5X10"% cm~!/K; and
I ;~0.0 cm™!, I',,~0.2 cm™!. While the linewidth
variation and energy shift are in good agreement with
those given by Ref. 7, we found lower values for the re-
sidual linewidths at 0 K, confirming the good quality of
our samples. In the high-temperature limit the cubic
term of anharmonicity gives a linear temperature depen-
dence of linewidth and energy shift, as easily seen from
Egs. (7) and (8). Higher orders in Hamiltonian expansion
give, instead, a power dependence greater than 1.!° This
suggests that decay or scattering processes with three
phonons are predominant for E, modes. In addition,
since for anharmonic interactions I';;=const
X[n(w/2)+1] we find, at T=0 K, I;;=0 cm™".
Therefore, according to experimental data, different
broadening channels, which are independent from tem-
perature (electron-phonon interaction, impurities, or
structural defects) do not play a significant part in the E

and E (less than 0.2 cm ~!) linewidths. Raman cross sec-
tions of low-frequency E, phonons have been calculated
using Eq. (11). The double degeneracy of the E, modes
strongly complicates the expression of this equation,
without, however, modifying the phonon line shape
significantly. By a convolution of instrumental bandpass
function, the curves shown in Fig. 3 by solid circles have
been obtained. Each curve represents the best fitting of
the experimental data at 150, 200, 250, and 293 K. A
comparison with the line shapes (solid line in Fig. 3) al-
lows us to verify the goodness of the present model over a
wide range of temperatures. At temperatures lower than
150 K, experimental spectra are still well described, but
the signal-to-noise ratio makes the comparison with the

:\ i ; Eg 432

1 1
0 100 200 300

FIG. 4. Linewidth and energy shift of Egl (empty squares) and
E; (solid squares) vs temperature. In the lower part of the
figure the mode-mixing parameter I, ,=2I"; , (solid squares) is
reported.
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theory ineffective. It is to be noted that the fitting param-
eters (except I'; ) have the immediate physical meaning
of intensity, broadening, and energy shift of the phonon
resonances (see Fig. 4).

The energy dependence of the self-energy G; ; has been
taken to be linear. This is a good approximation for I'; ;
as discussed in the preceding section. However, even if it
does not represent the correct frequency dependence for
the real part, the frequency shift A,; has negligible
influence on the line shape. Consequently, the values of
A, ,=A, | have been taken to be equal to the diagonal-
part values. In the Eg1 free-phonon propagator a constant
imaginary part has been added to the real frequency. In
this way we take into account perturbation effects which
do not derive from anharmonicity, as suggested from the
analysis of mode linewidth. It is worthwhile to remember
that the use of a convolution technique rules out the
influence of the instrumental finite resolution as the cause
of nonzero Raman scattering at w,. At room tempera-
ture the value obtained for 2T, , is 1.1 cm !, which is in
the range between the L (0 cm™!) and ZR (1.7 cm™})
values. This is in reasonable agreement with the anisot-
ropy of mercury iodide, which should differentiate
acoustic-phonon branches with different polarizations.?’
In addition, the 2I'; , values vary from 1.1 cm ™! at room
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temperature to 0.6 cm ! at 150 K and, within the experi-
mental error, a linear behavior with the temperature is
displayed. Since many-body theory yields a displacement
proportional to T for all the G, ; elements [Eq. (8)], as far
as the coupling is due to cubic anharmonicity, further
confidence can be placed in this approach.

IV. FINAL MARKS

We have studied anharmonic mixing between low-
energy modes in mercury iodide. Previous experimental
and theoretical investigations showed the existence of the
two limiting situations characterized, respectively, by no
phonon mixing or by a strong interference effect.® In this
work new experimental evidence on the intermediate situ-
ation is reported for Hgl,. We have show that the finite
lifetime of E, low-frequency vibrations is principally due
to anharmonic interaction. A new model based on the
many-body formalism has also been developed in order to
reproduce experimental spectra. The agreement between
theory and experimental results has been found to be
quite satisfactory for all temperatures we have studied.
Finally, we have also discussed in detail the physical
meaning of the G, ; parameters in relation to the micro-
scopic dynamics of anharmonic processes.

*Present address: Institut de Physique Appliquée, Ecole Po-
lytechnique Fédérale de Lausanne, CH-1015 Lausanne,
Switzerland.
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